Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?

本文主要是介绍Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dialogue Transformers:实现抗干扰能力的对话模型

    • 抗干扰能力
    • 基于 Transformer 的实现技术
    • 优化目标

 


抗干扰能力

前置知识:从【注意力机制】开始,到【Transformer】的零基础【大模型】系列

Dialogue Transformers 论文地址:https://arxiv.org/pdf/1910.00486.pdf

医学大模型的一个问题:偏离主诉和没抓住核心,顶级医生发现用户问题会一追到底,而不是跟随用户关注无关内容,单纯理解对几句话是毫无意义。

论文中的一段话:

  • BOT:您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?
  • 用户:我收到退款后,我的账户上还有存款吗?
  • BOT:是的,您的账户有10美元。
  • 用户:好的,很好。
  • BOT:我可以下订单吗?(普通的对话系统,ta不会要催用户下单,这个跟人一样)
  • 用户:是的。
  • 机器人:完成。你明天应该能拿到你的东西。

第一行系统的回复是:“您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?”。

而用户在第二行提出的问题是:“我收到退款后,我的账户上还有存款吗?”这两句话之间的相关性并不明显。

系统给出了【我可以下订单吗?】,而这个回复同第一行内容高度相关,重新回到了之前的对话上下文里的核心问题。

基于 Transformer 的实现技术

论文证明了,Transformer架构比 循环神经网络RNN 模型,更适合于多轮对话的抗干扰能力。

3 种技术实现方案:

  1. 对话栈:将对话视为一个堆栈,按照后进先出的方式进行操作。然而,这种技术的缺点是一旦子对话完成并从栈中移除,就无法回到原来的子对话。因此,无法灵活地处理干扰和回到之前的对话上下文。

  2. RNN网络:核心思想是当前状态包含过去的信息。然而,在实际业务对话中,很难获得足够的训练数据来满足RNN的训练需求,导致训练结果不确定性较高。此外,RNN默认使用整个输入进行编码,如果前面的输出有偏差,会导致后续训练结果偏离目标。

  3. Transformers:Transformer相比于前两种技术,在处理意外输入内容时具有更强的抗干扰性。Transformer利用自注意力机制预先选择哪些tokens对当前状态有影响,忽略对当前状态无意义的其他tokens。ta能够独立地进行每一步的预测,并在发现无关输入时保持对话的连贯性。相比之下,使用RNN的REDP机制复制对话历史信息来回到正轨,但相对于Transformer,REDP的网络结构更复杂且泛化能力较差。

对于开放领域的对话,Transformer可以将对话上下文和领域背景知识合并,用于处理开放领域的对话任务。

可以使用 retrieve 模式或通用模式来实现,retrieve 模式使用两层 Transformer 进行相似度对比和回复编码,通用模式则将 Transformer 用作解码器逐个生成回复的 token。

总之,相对于 对话栈 和 RNN 网络,Transformer 在处理对话中的干扰和回到原对话上下文方面,具有更好的性能和灵活性。

优化目标

在Transformer的对话机制中,会将对话状态和每个系统行为进行编码,并在训练时最大化ta们之间的相似度。

  • 对当前用户输入的信息 User Intent Entities、系统 BOT 给予的信息、历史信息 Previous System Action 进行编码,形成一个嵌入层 embedding layer。
  • 再将 嵌入层里的隐藏状态 与每个系统行为 System Action 生成的向量,形成另一个嵌入层,进行相似度比较,以选择相似度 Similarity 排名最高的系统行为。

在这个过程中,采用了单向注意力机制,目的是让 Transformer 无法看到接下来的内容,需要将其遮住。

在端到端的 TED(Transformer Encoder Decoder)策略中,仍然采用 retrieve 模式,不会生成新的响应。

  • Retrieve模式是从预定义的候选回复集合中选择最合适的回复。在这种模式下,系统不会生成新的响应,而是从候选回复集合中检索出一个最相关的回复作为系统的回应。

  • 基于检索或排序的方法来选择最合适的回复。计算对话历史和每个候选回复之间的相似度或相关性来实现。常见的方法是使用基于词向量或句向量的相似度计算方法,如余弦相似度或点积相似度。

用户和系统的对话被编码成 “bag-of-words” 的向量。

  • 用户:[我, 想, 预订, 一张, 机票, 去, 纽约]
  • 每个句子被转换成了一个向量,表示句子中出现的单词及其频率。

在每一轮对话中,Transformer 动态地使用自注意力机制来访问对话历史信息的不同部分。

  • 如果认为 “预订” 和 “机票” 这两个单词对于生成回复很重要,那ta会分配更高的注意力权重给这两个单词,从而更关注这部分信息。

Transformer 的对话机制通过编码对话状态和系统行为,并使用自注意力机制来进行相似度比较,以选择最合适的系统行为。

这种方法能够动态地利用对话历史信息,并在训练过程中最大化状态和行为之间的相似度。

损失函数:

把输入向量和系统行为向量,放在同一个网络里进行训练,通过 Loss 进行反向传播。

损失度的计算公式, S+ 代表正样本的损失度,S- 代表负样本的损失度。

  • 正样本表示属于目标类别的样本(订机票、天气,相关的信息)
  • 负样本表示不属于目标类别的样本(有什么好的零食,无关的信息)

这个公式核心就是,最大化正样本,最小化负样本。

这篇关于Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492991

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造