Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?

本文主要是介绍Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dialogue Transformers:实现抗干扰能力的对话模型

    • 抗干扰能力
    • 基于 Transformer 的实现技术
    • 优化目标

 


抗干扰能力

前置知识:从【注意力机制】开始,到【Transformer】的零基础【大模型】系列

Dialogue Transformers 论文地址:https://arxiv.org/pdf/1910.00486.pdf

医学大模型的一个问题:偏离主诉和没抓住核心,顶级医生发现用户问题会一追到底,而不是跟随用户关注无关内容,单纯理解对几句话是毫无意义。

论文中的一段话:

  • BOT:您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?
  • 用户:我收到退款后,我的账户上还有存款吗?
  • BOT:是的,您的账户有10美元。
  • 用户:好的,很好。
  • BOT:我可以下订单吗?(普通的对话系统,ta不会要催用户下单,这个跟人一样)
  • 用户:是的。
  • 机器人:完成。你明天应该能拿到你的东西。

第一行系统的回复是:“您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?”。

而用户在第二行提出的问题是:“我收到退款后,我的账户上还有存款吗?”这两句话之间的相关性并不明显。

系统给出了【我可以下订单吗?】,而这个回复同第一行内容高度相关,重新回到了之前的对话上下文里的核心问题。

基于 Transformer 的实现技术

论文证明了,Transformer架构比 循环神经网络RNN 模型,更适合于多轮对话的抗干扰能力。

3 种技术实现方案:

  1. 对话栈:将对话视为一个堆栈,按照后进先出的方式进行操作。然而,这种技术的缺点是一旦子对话完成并从栈中移除,就无法回到原来的子对话。因此,无法灵活地处理干扰和回到之前的对话上下文。

  2. RNN网络:核心思想是当前状态包含过去的信息。然而,在实际业务对话中,很难获得足够的训练数据来满足RNN的训练需求,导致训练结果不确定性较高。此外,RNN默认使用整个输入进行编码,如果前面的输出有偏差,会导致后续训练结果偏离目标。

  3. Transformers:Transformer相比于前两种技术,在处理意外输入内容时具有更强的抗干扰性。Transformer利用自注意力机制预先选择哪些tokens对当前状态有影响,忽略对当前状态无意义的其他tokens。ta能够独立地进行每一步的预测,并在发现无关输入时保持对话的连贯性。相比之下,使用RNN的REDP机制复制对话历史信息来回到正轨,但相对于Transformer,REDP的网络结构更复杂且泛化能力较差。

对于开放领域的对话,Transformer可以将对话上下文和领域背景知识合并,用于处理开放领域的对话任务。

可以使用 retrieve 模式或通用模式来实现,retrieve 模式使用两层 Transformer 进行相似度对比和回复编码,通用模式则将 Transformer 用作解码器逐个生成回复的 token。

总之,相对于 对话栈 和 RNN 网络,Transformer 在处理对话中的干扰和回到原对话上下文方面,具有更好的性能和灵活性。

优化目标

在Transformer的对话机制中,会将对话状态和每个系统行为进行编码,并在训练时最大化ta们之间的相似度。

  • 对当前用户输入的信息 User Intent Entities、系统 BOT 给予的信息、历史信息 Previous System Action 进行编码,形成一个嵌入层 embedding layer。
  • 再将 嵌入层里的隐藏状态 与每个系统行为 System Action 生成的向量,形成另一个嵌入层,进行相似度比较,以选择相似度 Similarity 排名最高的系统行为。

在这个过程中,采用了单向注意力机制,目的是让 Transformer 无法看到接下来的内容,需要将其遮住。

在端到端的 TED(Transformer Encoder Decoder)策略中,仍然采用 retrieve 模式,不会生成新的响应。

  • Retrieve模式是从预定义的候选回复集合中选择最合适的回复。在这种模式下,系统不会生成新的响应,而是从候选回复集合中检索出一个最相关的回复作为系统的回应。

  • 基于检索或排序的方法来选择最合适的回复。计算对话历史和每个候选回复之间的相似度或相关性来实现。常见的方法是使用基于词向量或句向量的相似度计算方法,如余弦相似度或点积相似度。

用户和系统的对话被编码成 “bag-of-words” 的向量。

  • 用户:[我, 想, 预订, 一张, 机票, 去, 纽约]
  • 每个句子被转换成了一个向量,表示句子中出现的单词及其频率。

在每一轮对话中,Transformer 动态地使用自注意力机制来访问对话历史信息的不同部分。

  • 如果认为 “预订” 和 “机票” 这两个单词对于生成回复很重要,那ta会分配更高的注意力权重给这两个单词,从而更关注这部分信息。

Transformer 的对话机制通过编码对话状态和系统行为,并使用自注意力机制来进行相似度比较,以选择最合适的系统行为。

这种方法能够动态地利用对话历史信息,并在训练过程中最大化状态和行为之间的相似度。

损失函数:

把输入向量和系统行为向量,放在同一个网络里进行训练,通过 Loss 进行反向传播。

损失度的计算公式, S+ 代表正样本的损失度,S- 代表负样本的损失度。

  • 正样本表示属于目标类别的样本(订机票、天气,相关的信息)
  • 负样本表示不属于目标类别的样本(有什么好的零食,无关的信息)

这个公式核心就是,最大化正样本,最小化负样本。

这篇关于Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492991

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁