关于pytorch中的dim的理解

2023-12-14 13:20
文章标签 理解 pytorch dim

本文主要是介绍关于pytorch中的dim的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天碰到一个代码看起来很简单,但是细究原理又感觉好像不太通不太对劲,就是多维tensor数据的操作,比如:y.sum(dim=2),乍一看很简单数据相加操作,但是仔细一想,这里在第3维度的数据到底是横向相加还是纵向相加,带着疑问实验几次就明白了。

首先给个完整的例子:

import  torchy = torch.tensor([[[1, 2, 3],[4, 5, 6]],[[1, 2, 3],[4, 5, 6]],[[1, 2, 3],[4, 5, 6]]])print(y.sum(dim=2))

这里的y.shape = (3, 2, 3),三个维度的数据,所以dim可以是0~2也可以是-1~-3。我们每个维度都进行操作一遍就清楚了。

  • 当dim=0时,相当于有3个二维的向量进行相加,结果还是一个二维向量(对应位置相加):
    在这里插入图片描述
    y.shape = (3, 2, 3) —> y.shape = (2, 3)
  • 当dim=1时,相当于有2个一维的向量进行相加×3,结果是1个一维向量×3则还是一个二维向量:
    在这里插入图片描述
    y.shape = (3, 2, 3) —> y.shape = (3, 3)
  • 当dim=2时,相当于有3个数值进行相加×2×3,结果两个值组成一维向量,三个一维向量组成二维向量:
    在这里插入图片描述
    y.shape = (3, 2, 3) —> y.shape = (3, 2)

其他的数据操作也是这样类似的思想。
总结:从中可以看出只要对一个n维度的数据的其中一维进行操作的话,得到的结果会是n-1维的向量,shape则是去掉那一维的个数。

这篇关于关于pytorch中的dim的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492671

相关文章

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确