大数据云计算——Docker环境下部署Hadoop集群及运行集群案列

2023-12-14 10:44

本文主要是介绍大数据云计算——Docker环境下部署Hadoop集群及运行集群案列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据云计算——Docker环境下部署Hadoop集群及运行集群案列


本文着重介绍了在Docker环境下部署Hadoop集群以及实际案例中的集群运行。首先,文章详细解释了Hadoop的基本概念和其在大数据处理中的重要性,以及为何选择在Docker环境下部署Hadoop集群。接着,阐述了在Docker中配置和启动Hadoop集群所需的步骤和技术要点。
在展示部署过程中,文章包含了针对Docker容器的Hadoop组件设置,并指导读者如何通过Docker Compose或其他相关工具建立一个多节点的Hadoop集群。特别强调了节点间的通信和配置,确保集群可以有效协同工作。
进一步,本文通过案例描述了在已搭建的Hadoop集群上运行的具体应用场景。案例可能涉及到数据存储、MapReduce任务或其他Hadoop支持的数据处理方式。这些案例旨在展示Hadoop集群在实际大数据处理中的应用和价值。
通过本文,读者可以深入了解如何利用Docker环境快速搭建Hadoop集群,并通过案例展示集群的运行过程,为大数据云计算中的Hadoop应用提供了实用的指导和参考。

首先查看版本环境(docker中没有下载docker和docker-compose的可以看我上一篇博客
Linux 安装配置Docker 和Docker compose 并在docker中部署mysql和中文版portainer图形化管理界面

查看docker和docker-compose版本:

 docker version
docker-compose version

OK,环境没问题,我们正式开始Docker中部署hadoop

<Docker中部署Hadoop>

更新系统

sudo apt update

sudo apt upgrade

国内加速镜像下载修改仓库源

创建或修改 /etc/docker/daemon.json 文件

sudo vi /etc/docker/daemon.json
{"registry-mirrors": [ "http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn","https://registry.docker-cn.com","https://kfp63jaj.mirror.aliyuncs.com"]
}

重载docker让CDN配置生效

sudo systemctl daemon-reload
sudo systemctl restart docker

抓取ubuntu 20.04的镜像作为基础搭建hadoop环境

sudo docker pull ubuntu:20.04

使用该ubuntu镜像启动,填写具体的path替代

sudo docker run -it -v <host-share-path>:<container-share-path> ubuntu

例如

sudo docker run -it -v ~/hadoop/build:/home/hadoop/build ubuntu

 

容器启动后,会自动进入容器的控制台

在容器的控制台安装所需软件

apt-get update

apt-get upgrade

 安装所需软件

apt-get install net-tools vim openssh-server

 

/etc/init.d/ssh start

让ssh服务器自动启动

vi ~/.bashrc

在文件的最末尾按O进入编辑模式,加上:

/etc/init.d/ssh start

 

按ESC返回命令模式,输入:wq保存并退出。

让修改即刻生效

source ~/.bashrc

配置ssh的无密码访问

ssh-keygen -t rsa

连续按回车

cd ~/.ssh
cat id_rsa.pub >> authorized_keys

进入docker中ubuntu里面的容器

docker start 11f9454b301f
docker exec -it clever_gauss  bash

安装JDK 8

hadoop 3.x目前仅支持jdk 7, 8

apt-get install openjdk-8-jdk

在环境变量中引用jdk,编辑bash命令行配置文件

vi ~/.bashrc

在文件的最末尾加上

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/export PATH=$PATH:$JAVA_HOME/bin

让jdk配置即刻生效

source ~/.bashrc

测试jdk正常运作

java -version

将当前容器保存为镜像

sudo docker commit <CONTAINER ID> <IMAGE NAME> #自己起的镜像名字

 sudo docker commit 11f9454b301f  ubuntu204 #我的是ubuntu204

 可以看到该镜像已经创建成功,下次需要新建容器时可直接使用该镜像

注意!!!此过程的两个相关路径如下(不要搞混了):
<host-share-path>指的是~/hadoop/build
<container-share-path>指的是/home/hadoop/build

下载hadoop,下面以3.2.3为例

https://hadoop.apache.org/releases.html

cd  ~/hadoop/build
wget https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz

(这种方法能下载但是会出现下载的包大小不对,我们可以用第二种方法)

方法二:

在自己电脑浏览器输入下载https://dlcdn.apache.org/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz

下载到自己电脑上 通过winscp上传到虚拟机中

然后有安装包的目录打开终端, 输入

sudo mv hadoop-3.2.3.tar.gz ~/hadoop/build

移动文件到目录 ~/hadoop/build

在容器控制台上解压hadoop(就是之前创建的容器的控制台,不是自己的控制台!

docker start 11f9454b301f
docker exec -it clever_gauss  bash
cd /home/hadoop/build
tar -zxvf hadoop-3.2.3.tar.gz -C /usr/local

 

安装完成了,查看hadoop版本

cd /usr/local/hadoop-3.2.3
./bin/hadoop version

为hadoop指定jdk位置

vi etc/hadoop/hadoop-env.sh

查找到被注释掉的JAVA_HOME配置位置,更改为刚才设定的jdk位置

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

hadoop联机配置

配置core-site.xml文件

vi etc/hadoop/core-site.xml

加入:

<configuration><property><name>hadoop.tmp.dir</name><value>file:/usr/local/hadoop-3.2.3/tmp</value><description>Abase for other temporary directories.</description></property><property><name>fs.defaultFS</name><value>hdfs://master:9000</value></property>
</configuration>

配置hdfs-site.xml文件

vi etc/hadoop/hdfs-site.xml

加入

<configuration><!--- 配置保存Fsimage位置 --><property><name>dfs.namenode.name.dir</name><value>file:/usr/local/hadoop-3.2.3/namenode_dir</value></property><!--- 配置保存数据文件的位置 --><property><name>dfs.datanode.data.dir</name><value>file:/usr/local/hadoop-3.2.3/datanode_dir</value></property><property><name>dfs.replication</name><value>3</value></property>
</configuration>

MapReduce配置

该配置文件的定义:

https://hadoop.apache.org/docs/r<Hadoop版本号>/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

配置mapred-site.xml文件

vi etc/hadoop/mapred-site.xml

加入: 

<configuration><!--- mapreduce框架的名字 --><property><name>mapreduce.framework.name</name><value>yarn</value></property><! -- 设定HADOOP的位置给yarn和mapreduce程序 --><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property>
</configuration>

配置yarn-site.xml文件

vi etc/hadoop/yarn-site.xml

 加入

<configuration>
<!-- Site specific YARN configuration properties --><!-- 辅助服务,数据混洗 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.resourcemanager.hostname</name><value>master</value></property>
</configuration>

服务启动权限配置

配置start-dfs.sh与stop-dfs.sh文件

vi sbin/start-dfs.sh 和 vi sbin/stop-dfs.sh
vi sbin/start-dfs.sh
HDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root

继续修改配置文件

vi sbin/stop-dfs.sh
HDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root

配置start-yarn.sh与stop-yarn.sh文件

vi sbin/start-yarn.sh 和 vi sbin/stop-yarn.sh
vi sbin/start-yarn.sh
YARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root

vi sbin/stop-yarn.sh
YARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root

 核心文件一定不能配错,否则后面会出现很多问题!

配置完成,保存镜像

docker ps

docker commit 11f9454b301f ubuntu-myx

保存的镜像名为 ubuntu-myx

 

启动hadoop,并进行网络配置

打开三个宿主控制台,启动一主两从三个容器

master

打开端口映射:8088 => 8088

sudo docker run -p 8088:8088 -it -h master --name master ubuntu-myx

启动节点worker01

sudo docker run -it -h worker01 --name worker01 ubuntu-myx

节点worker02

sudo docker run -it -h worker02 --name worker02 ubuntu-myx

分别打开三个容器的/etc/hosts,将彼此的ip地址与主机名的映射信息补全(三个容器均需要如此配置)

vi /etc/hosts

使用以下命令查询ip

ifconfig

添加信息(每次容器启动该文件都需要调整)

172.17.0.3      master

172.17.0.4      worker01

172.17.0.5      worker02

 

检查配置是否有效

ssh master
ssh worker01
ssh worker02

master 连接worker01节点successfully:

worker01节点连接master 成功:

  worker02连接worker01节点successfully:

在master容器上配置worker容器的主机名

cd /usr/local/hadoop-3.2.3
vi etc/hadoop/workers

删除localhost,加入

worker01

worker02

网络配置完成

启动hadoop

在master主机上

cd /usr/local/hadoop-3.2.3
./bin/hdfs namenode -format

正常启动 

启动服务

./sbin/start-all.sh

效果如下表示正常

在hdfs上建立一个目录存放文件

假设该目录为:/home/hadoop/input

./bin/hdfs dfs -mkdir -p /home/hadoop/input
./bin/hdfs dfs -put ./etc/hadoop/*.xml /home/hadoop/input

查看分发复制是否正常

./bin/hdfs dfs -ls /home/hadoop/input

运行案例:

在hdfs上建立一个目录存放文件

例如

./bin/hdfs dfs -mkdir -p /home/hadoop/wordcount

把文本程序放进去

./bin/hdfs dfs -put hello /home/hadoop/wordcount

查看分发情况

./bin/hdfs dfs -ls /home/hadoop/wordcount

运行MapReduce自带wordcount的示例程序(自带的样例程序运行不出来,可能是虚拟机性能的问题,这里就换成了简单的wordcount程序)

./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.3.jar wordcount /home/hadoop/wordcount /home/hadoop/wordcount/output

 运行成功:

 

运行结束后,查看输出结果

./bin/hdfs dfs -ls /home/hadoop/wordcount/output
./bin/hdfs dfs -cat /home/hadoop/wordcount/output/*

 至此,Docker部署hadoop成功!跟着步骤走一般都没有什么问题。

这篇关于大数据云计算——Docker环境下部署Hadoop集群及运行集群案列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492214

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

docker 重命名镜像的实现方法

《docker重命名镜像的实现方法》在Docker中无法直接重命名镜像,但可通过添加新标签、删除旧镜像后重新拉取/构建,或在DockerCompose中修改配置文件实现名称变更,感兴趣的可以了解一下... 目录使用标签(Tagging)删除旧的php镜像并重新拉取或构建使用docker Compose在Do

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke