Ransac 算法的探索和应用

2023-12-14 09:01
文章标签 算法 应用 探索 ransac

本文主要是介绍Ransac 算法的探索和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ransac 算法python 应用和实现

Ransac 算法是一种常用的图像匹配算法,在参数估计领域也经常被使用到。针对估计各种曲线的鲁棒模型参数,效果显著。这里对ransac算法进行某些探索。

python program:

import numpy as np
import matplotlib.pyplot as plt
import random
import math# 数据量。
SIZE = 60
SIZE_N = 10 # the numbe of noise
# 产生数据。np.linspace 返回一个一维数组,SIZE指定数组长度。
# 数组最小值是0,最大值是10。所有元素间隔相等。
X = np.linspace(0, 10, SIZE)
Y = -2 * X + 5fig = plt.figure()
# 画图区域分成1行1列。选择第一块区域。
ax1 = fig.add_subplot(111)
# 标题
ax1.set_title("title ")# 让散点图的数据更加随机并且添加一些噪声。
random_x = []
random_y = []random_x2 = []
random_y2 = []random_x2b = []
random_y2b = []random_x22 = []
random_y22 = []random_x22b = []
random_y22b = []
# 添加直线随机噪声
for i in range(SIZE):random_x.append(X[i] + random.uniform(-1, 1)) random_y.append(Y[i] + random.uniform(-1, 1)) 
# 添加随机噪声
for i in range(SIZE_N):random_x.append(random.uniform(-SIZE,SIZE))random_y.append(random.uniform(-SIZE,SIZE))
RANDOM_X = np.array(random_x) # 散点图的横轴。
RANDOM_Y = np.array(random_y) # 散点图的纵轴。# 使用RANSAC算法估算模型
# 迭代最大次数,每次得到更好的估计会优化iters的数值
iters = 1000
iters2 = int(iters/2)
# 数据和模型之间可接受的差值
sigma = 3
sigma2 = 10
# 最好模型的参数估计和内点数目
best_a = 0
best_b = 0
best_a2 = 0
best_b2 = 0
pretotal = 0
pretotal2 = 0
# 希望的得到正确模型的概率
P = 0.99for i in range(iters):# update the record position for seconde RANSAC random_x2 = []random_y2 = []# 随机在数据中红选出两个点去求解模型sample_index = random.sample(range(SIZE + SIZE_N),2)x_1 = RANDOM_X[sample_index[0]]x_2 = RANDOM_X[sample_index[1]]y_1 = RANDOM_Y[sample_index[0]]y_2 = RANDOM_Y[sample_index[1]]# y = ax + b 求解出a,ba = (y_2 - y_1) / (x_2 - x_1)b = y_1 - a * x_1# 算出内点数目total_inlier = 0for index in range(SIZE + SIZE_N): # SIZE * 2 is because add 2 times noise of SIZEy_estimate = a * RANDOM_X[index] + bif abs(y_estimate - RANDOM_Y[index]) < sigma:total_inlier = total_inlier + 1# record these points that between +-sigmarandom_x2.append(RANDOM_X[index])random_y2.append(RANDOM_Y[index])# 判断当前的模型是否比之前估算的模型好if total_inlier > pretotal:iters = math.log(1 - P) / math.log(1 - pow(total_inlier / (SIZE + SIZE_N), 2))pretotal = total_inlierbest_a = abest_b = b# update the latest better pointsrandom_x2b = np.array(pretotal) # 散点图的横轴。random_y2b = np.array(pretotal) # 散点图的纵轴。random_x2b = random_x2random_y2b = random_y2SIZE2 = pretotal# 判断是否当前模型已经超过八成的点if total_inlier > 0.8 * SIZE:break# 用我们得到的最佳估计画图
# 横轴名称。
ax1.set_xlabel("top view x-axis")
# 纵轴名称。
ax1.set_ylabel("top view y-axis")Y = best_a * RANDOM_X + best_b# show the ransac2 points:
ax1.scatter(random_x2b, random_y2b, c='b', marker='v')# 直线图
ax1.scatter(RANDOM_X, RANDOM_Y, c='r', marker='^')ax1.plot(RANDOM_X, Y, c='b',)
text = "best_a = " + str(best_a) + "\nbest_b = " + str(best_b)
plt.text(5,50, text,fontdict={'size': 12, 'color': 'b'})# the seconde ransac call the point that cover the largest area
RANDOM_XX = np.array(random_x2b) # 散点图的横轴。
RANDOM_YY = np.array(random_y2b) # 散点图的纵轴。for i in range(iters2):random_x22 = []random_y22 = []# 随机在数据中红选出一个点去求解模型sample_index2 = random.sample(range(SIZE2),1)x_12 = RANDOM_XX[sample_index2[0]]y_12 = RANDOM_YY[sample_index2[0]]# y = ax + b 求解出a,ba2 = -1 / ab2 = y_12 - (a2 * x_12)# 算出内点数目total_inlier2 = 0for index in range(SIZE2):    # SIZE * 2 is because add 2 times noise of SIZEy_estimate2 = a2 * RANDOM_XX[index] + b2if abs(y_estimate2 - RANDOM_YY[index]) < sigma2:total_inlier2 = total_inlier2 + 1# record these points that between +-sigmarandom_x22.append(RANDOM_XX[index])random_y22.append(RANDOM_YY[index])# 判断当前的模型是否比之前估算的模型好if total_inlier2 > pretotal2:print("total_inlier2:", total_inlier2)print("SIZE2:", SIZE2)iters = math.log(1 - P) / math.log(1 - pow(total_inlier2 / SIZE2, 2))pretotal2 = total_inlier2best_a2 = a2best_b2 = b2# update the latest better pointsrandom_x22b = np.array(pretotal2) # 散点图的横轴。random_y22b = np.array(pretotal2) # 散点图的纵轴。random_x22b = random_x22random_y22b = random_y22# 判断是否当前模型已经超过八成的点if total_inlier2 > 0.8 * SIZE2:break# 用我们得到的最佳估计画图
YY = best_a2 * RANDOM_XX + best_b2# show the ransac2 points:
ax1.scatter(random_x22b, random_y22b, c='g', marker='o')ax1.set_aspect('equal', adjustable='box')
# 直线图
ax1.plot(RANDOM_XX, YY, c='g' )
text = "best_a2 = " + str(best_a2) + "\nbest_b2 = " + str(best_b2)
plt.text(1,30, text,fontdict={'size': 12, 'color': 'g'})
plt.show()

ptyhon results:

在这里插入图片描述

References:

ransac实现参考:
scatter()使用方法
Matplotlib 绘制等轴正方形图
random.uniform( ) 函数教程与实例

这篇关于Ransac 算法的探索和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491917

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima