Ransac 算法的探索和应用

2023-12-14 09:01
文章标签 算法 应用 探索 ransac

本文主要是介绍Ransac 算法的探索和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ransac 算法python 应用和实现

Ransac 算法是一种常用的图像匹配算法,在参数估计领域也经常被使用到。针对估计各种曲线的鲁棒模型参数,效果显著。这里对ransac算法进行某些探索。

python program:

import numpy as np
import matplotlib.pyplot as plt
import random
import math# 数据量。
SIZE = 60
SIZE_N = 10 # the numbe of noise
# 产生数据。np.linspace 返回一个一维数组,SIZE指定数组长度。
# 数组最小值是0,最大值是10。所有元素间隔相等。
X = np.linspace(0, 10, SIZE)
Y = -2 * X + 5fig = plt.figure()
# 画图区域分成1行1列。选择第一块区域。
ax1 = fig.add_subplot(111)
# 标题
ax1.set_title("title ")# 让散点图的数据更加随机并且添加一些噪声。
random_x = []
random_y = []random_x2 = []
random_y2 = []random_x2b = []
random_y2b = []random_x22 = []
random_y22 = []random_x22b = []
random_y22b = []
# 添加直线随机噪声
for i in range(SIZE):random_x.append(X[i] + random.uniform(-1, 1)) random_y.append(Y[i] + random.uniform(-1, 1)) 
# 添加随机噪声
for i in range(SIZE_N):random_x.append(random.uniform(-SIZE,SIZE))random_y.append(random.uniform(-SIZE,SIZE))
RANDOM_X = np.array(random_x) # 散点图的横轴。
RANDOM_Y = np.array(random_y) # 散点图的纵轴。# 使用RANSAC算法估算模型
# 迭代最大次数,每次得到更好的估计会优化iters的数值
iters = 1000
iters2 = int(iters/2)
# 数据和模型之间可接受的差值
sigma = 3
sigma2 = 10
# 最好模型的参数估计和内点数目
best_a = 0
best_b = 0
best_a2 = 0
best_b2 = 0
pretotal = 0
pretotal2 = 0
# 希望的得到正确模型的概率
P = 0.99for i in range(iters):# update the record position for seconde RANSAC random_x2 = []random_y2 = []# 随机在数据中红选出两个点去求解模型sample_index = random.sample(range(SIZE + SIZE_N),2)x_1 = RANDOM_X[sample_index[0]]x_2 = RANDOM_X[sample_index[1]]y_1 = RANDOM_Y[sample_index[0]]y_2 = RANDOM_Y[sample_index[1]]# y = ax + b 求解出a,ba = (y_2 - y_1) / (x_2 - x_1)b = y_1 - a * x_1# 算出内点数目total_inlier = 0for index in range(SIZE + SIZE_N): # SIZE * 2 is because add 2 times noise of SIZEy_estimate = a * RANDOM_X[index] + bif abs(y_estimate - RANDOM_Y[index]) < sigma:total_inlier = total_inlier + 1# record these points that between +-sigmarandom_x2.append(RANDOM_X[index])random_y2.append(RANDOM_Y[index])# 判断当前的模型是否比之前估算的模型好if total_inlier > pretotal:iters = math.log(1 - P) / math.log(1 - pow(total_inlier / (SIZE + SIZE_N), 2))pretotal = total_inlierbest_a = abest_b = b# update the latest better pointsrandom_x2b = np.array(pretotal) # 散点图的横轴。random_y2b = np.array(pretotal) # 散点图的纵轴。random_x2b = random_x2random_y2b = random_y2SIZE2 = pretotal# 判断是否当前模型已经超过八成的点if total_inlier > 0.8 * SIZE:break# 用我们得到的最佳估计画图
# 横轴名称。
ax1.set_xlabel("top view x-axis")
# 纵轴名称。
ax1.set_ylabel("top view y-axis")Y = best_a * RANDOM_X + best_b# show the ransac2 points:
ax1.scatter(random_x2b, random_y2b, c='b', marker='v')# 直线图
ax1.scatter(RANDOM_X, RANDOM_Y, c='r', marker='^')ax1.plot(RANDOM_X, Y, c='b',)
text = "best_a = " + str(best_a) + "\nbest_b = " + str(best_b)
plt.text(5,50, text,fontdict={'size': 12, 'color': 'b'})# the seconde ransac call the point that cover the largest area
RANDOM_XX = np.array(random_x2b) # 散点图的横轴。
RANDOM_YY = np.array(random_y2b) # 散点图的纵轴。for i in range(iters2):random_x22 = []random_y22 = []# 随机在数据中红选出一个点去求解模型sample_index2 = random.sample(range(SIZE2),1)x_12 = RANDOM_XX[sample_index2[0]]y_12 = RANDOM_YY[sample_index2[0]]# y = ax + b 求解出a,ba2 = -1 / ab2 = y_12 - (a2 * x_12)# 算出内点数目total_inlier2 = 0for index in range(SIZE2):    # SIZE * 2 is because add 2 times noise of SIZEy_estimate2 = a2 * RANDOM_XX[index] + b2if abs(y_estimate2 - RANDOM_YY[index]) < sigma2:total_inlier2 = total_inlier2 + 1# record these points that between +-sigmarandom_x22.append(RANDOM_XX[index])random_y22.append(RANDOM_YY[index])# 判断当前的模型是否比之前估算的模型好if total_inlier2 > pretotal2:print("total_inlier2:", total_inlier2)print("SIZE2:", SIZE2)iters = math.log(1 - P) / math.log(1 - pow(total_inlier2 / SIZE2, 2))pretotal2 = total_inlier2best_a2 = a2best_b2 = b2# update the latest better pointsrandom_x22b = np.array(pretotal2) # 散点图的横轴。random_y22b = np.array(pretotal2) # 散点图的纵轴。random_x22b = random_x22random_y22b = random_y22# 判断是否当前模型已经超过八成的点if total_inlier2 > 0.8 * SIZE2:break# 用我们得到的最佳估计画图
YY = best_a2 * RANDOM_XX + best_b2# show the ransac2 points:
ax1.scatter(random_x22b, random_y22b, c='g', marker='o')ax1.set_aspect('equal', adjustable='box')
# 直线图
ax1.plot(RANDOM_XX, YY, c='g' )
text = "best_a2 = " + str(best_a2) + "\nbest_b2 = " + str(best_b2)
plt.text(1,30, text,fontdict={'size': 12, 'color': 'g'})
plt.show()

ptyhon results:

在这里插入图片描述

References:

ransac实现参考:
scatter()使用方法
Matplotlib 绘制等轴正方形图
random.uniform( ) 函数教程与实例

这篇关于Ransac 算法的探索和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491917

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2