【大数据】详解 AVRO 格式

2023-12-14 00:12
文章标签 数据 详解 格式 avro

本文主要是介绍【大数据】详解 AVRO 格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

详解 AVRO 格式

  • 1.Avro 介绍
  • 2.schema
    • 2.1 原始类型
    • 2.2 复杂类型
      • 2.2.1 Records
      • 2.2.2 Enums
      • 2.2.3 Arrays
      • 2.2.4 Maps
      • 2.2.5 Unions
      • 2.2.6 Fixed
  • 3.Avro 的文件存储格式
    • 3.1 数据编码
      • 3.1.1 原始类型
      • 3.1.2 复杂类型
    • 3.2 存储格式
    • 3.3 存储格式
  • 4.小结

1.Avro 介绍

Apache Avro 是 Hadoop 中的一个子项目,也是一个数据序列化系统,其数据最终以二进制格式,采用行式存储的方式进行存储。

Avro提供了:

  • ✅ 丰富的数据结构。
  • ✅ 可压缩、快速的二进制数据格式。
  • ✅ 一个用来存储持久化数据的容器文件。
  • ✅ 远程过程调用。
  • ✅ 与动态语言的简单集成,代码生成不需要读取或写入数据文件,也不需要使用或实现 RPC 协议。代码生成是一种可选的优化,只值得在静态类型语言中实现。

基于以上这些优点,Avro 在 Hadoop 体系中被广泛使用。除此之外,在 Hudi、Iceberg 中也都有用到 Avro 作为元数据信息的存储格式。

2.schema

Avro 依赖 schema模式)来实现数据结构的定义,schema 通过 json 对象来进行描述表示,具体表现为:

  • 一个 json 字符串命名一个定义的类型。
  • 一个 json 对象,其格式为 {"type":"typeName" ... attributes ...},其中 typeName原始类型名称复杂类型名称
  • 一个 json 数组,表示嵌入类型的联合。

schema 中的类型由 原始类型(也就是 基本类型)(nullbooleanintlongfloatdoublebytesstring)和 复杂类型recordenumarraymapunionfixed)组成。

2.1 原始类型

原始类型包括如下几种:

  • null:没有值
  • boolean:布尔类型的值
  • int 32 32 32 位整形
  • long 64 64 64 位整形
  • float 32 32 32 位浮点
  • double 64 64 64 位浮点
  • bytes 8 8 8 位无符号类型
  • stringunicode 字符集序列

原始类型没有指定的属性值,原始类型的名称也就是定义的类型的名称,因此,schema 中的 "string" 等价于 {"type":"string"}

2.2 复杂类型

Avro 支持 6 种复杂类型:recordsenumsarraysmapsunionsfixed

2.2.1 Records

reocrds 使用类型名称 "record",并支持以下属性

  • name:提供记录名称的 json 字符串(必选)
  • namespace:限定名称的 json 字符串
  • doc:一个 json 字符串,为用户提供该模式的说明(可选)
  • aliases:字符串的 json 数组,为该记录提供备用名称
  • fields:一个 json 数组,罗列所有字段(必选),每个字段又都是一个 json 对象,并包含如下属性:
    • name:字段的名称(必选)
    • doc:字段的描述(可选)
    • type:一个 schema,定义如上
    • default:字段的默认值
    • order:指定字段如何影响记录的排序顺序,有效值为 "ascending"(默认值)、"descending""ignore"
    • aliases:别名

一个简单示例:

{"type": "record","name": "LongList","aliases": ["LinkedLongs"],"fields", [{"name": "value", "type": "long"},{"name": "next", "type": ["null", "LongList"]}]
}

2.2.2 Enums

Enum 使用类型名称 enum,并支持以下属性

  • name:提供记录名称的 json 字符串(必选)
  • namespace:限定名称的 json 字符串
  • aliases:字符串的 json 数组,为该记录提供备用名称
  • doc:一个 json 字符串,为用户提供该模式的说明(可选)
  • symbols:一个 json 数组,以 json 字符串的形式列出符号。在枚举中每个符号必须唯一,不能重复,每个符号都必须匹配正则表达式 "[A-Za-z_][A-Za-z0-9_]*"
  • default:该枚举的默认值。

示例:

{"type": "enum","name": "Suit","symbols": ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]
}

2.2.3 Arrays

  • item:数组中元素的 schema

一个例子:声明一个 valuestringarray

{"type": "array","items": "string","default": []
}

2.2.4 Maps

  • valuesmap 的值(value)的 schema,其 key 被假定为字符串

一个例子:声明一个 valuelong 类型,(key 类型为 string)的 map

{"type": "map","values": "long","default": {}
}

2.2.5 Unions

union 使用 json 数组表示,例如 [null, "test"] 声明一个模式,它可以是空值或字符串。

需要注意的是:当为 union 类型的字段指定默认值时,默认值的类型必须与 union 第一个元素匹配,因此,对于包含 "null"union,通常先列出 "null",因为此类型的 union 的默认值通常为空。

另外,union 不能包含多个相同类型的 schema,类型为 recordfixedenum 除外。

2.2.6 Fixed

Fixed 使用类型名称 "fixed" 并支持以下属性:

  • name:提供记录名称的 json 字符串(必选)
  • namespace:限定名称的 json 字符串
  • aliases:字符串的 json 数组,为该记录提供备用名称
  • doc:一个 json 字符串,为用户提供该模式的说明(可选)
  • size:一个整数,指定每个值的字节数(必须)

例如,16 字节的数可以声明为:

{"type": "fixed","name": "md5","size": 16
}

3.Avro 的文件存储格式

3.1 数据编码

3.1.1 原始类型

  • 对于 null 类型:不写入内容,即 0 字节长度的内容表示。
  • 对于 boolean 类型:以 1 字节的 0 或 1 来表示 falsetrue
  • 对于 intlong:以 zigzag 的方式编码写入。
  • 对于 float:固定 4 字节长度,先通过 floatToIntBits 转换 32 位整数,然后按小端编码写入。
  • 对于 double:固定 8 字节长度,先通过 doubleToLongBits 转换为 64 位整型,然后按小端编码写入。
  • 对于 bytes:先写入长度(采用 zigzag 编码写入),然后是对应长度的二进制数据内容。
  • 对于 string:同样先写入长度(采用 zigzag 编码写入),然后再写入字符串对应 utf8 的二进制数据。

3.1.2 复杂类型

  • 对于 enums:只需要将 enum 的值所在的 Index 作为结果进行编码即可,例如,枚举值为 ["A","B","C","D"],那么 0 就表示 "A",3 表示 "D"
  • 对于 maps:被编码为一系列的块。每个块由一个长整数的计数表示键值对的个数(采用 zigzag 编码写入),其后是多个键值对,计数为 0 的块表示 map 的结束。每个元素按照各自的 schema 类型进行编码。
  • 对于 arrays:与 map 类似,同样被编码为一系列的块,每个块包含一个长整数的计数,计数后跟具体的数组项内容,最后以 0 计数的块表示结束。数组项中的每个元素按照各自的 schema 类型进行编码。
  • 对于 unions:先写入 long 类型的计数表示每个 value 值的位置序号(从零开始),然后再对值按对应 schema 进行编码。
  • 对于 records:直接按照 schema 中的字段顺序来进行编码。
  • 对于 fixed:使用 schema 中定义的字节数对实例进行编码。

3.2 存储格式

在一个标准的 avro 文件中,同时存储了 schema 的信息,以及对应的数据内容。具体格式由三部分组成:

  • 魔数:固定 4 字节长度,内容为字符 'O''b''j',以及版本号标识,通常为 1 1 1

  • 元数据信息:文件的元数据属性,包括 schema、数据压缩编码方式等。整个元数据属性以一个 map 的形式编码存储,每个属性都以一个 KV 的形式存储,属性名对应 key,属性值对应 value,并以字节数组的形式存储。最后以一个固定 16 字节长度的随机字符串标识元数据的结束。

  • 数据内容:而数据内容则由一个或多个数据块构成。每个数据块的最前面是一个 long 型(按照 zigzag 编码存储)的计数表示该数据块中实际有多少条数据,后面再跟一个 long 型的计数表示编码后的( N N N 条)数据的长度,随后就是按照编码进行存储的一条条数据,在每个数据块的最后都有一个 16 字节长度的随机字符串标识块的结束。

整体存储内容如下图所示:
在这里插入图片描述

3.3 存储格式

我们通过一个实际例子来对照分析下。

首先定义 schema 的内容,具体为 4 个字段的表,名称(字符串)、年龄(整型)、技能(数组)、其他(map 类型),详细如下所示:

{"type":"record","name":"person","fields": [{"name": "name","type": "string"},{"name": "age","type": "int"},{"name": "skill","type": {"type":"array","items": "string"}},{"name": "other","type": {"type": "map","values": "string"}}]
}

再按照上面的 schema 定义两条数据(person.json):

{"name":"hncscwc","age":20,"skill":["hadoop","flink","spark","kafka"],"other":{"interests":"basketball"}}
{"name":"tom","age":18, "skill":["java","scala"],"other":{}}

通过 avro-tools 可以生成一个 avro 文件:

java -jar avro-tools-1.7.4.jar fromjson --schema-file person.avsc person.json > person.avro

通过二进制的方式查看生成的 avro 文件内容:
在这里插入图片描述
另外,对于一个已存在的文件,也可以通过 avro-tools 工具查看 schema 内容、数据内容。

[root@localhost avro]$ java -jar avro-tools-1.7.4.jar getschema ./person.avro
{"type" : "record","name" : "person","fields" : [ {"name" : "name","type" : "string"}, {"name" : "age","type" : "int"}, {"name" : "skill","type" : {"type" : "array","items" : "string"}}, {"name" : "other","type" : {"type" : "map","values" : "string"}} ]
}
[root@localhost avro]$ java -jar avro-tools-1.7.4.jar tojson ./person.avro
{"name":"hncscwc","age":20,"skill":["hadoop","flink","spark","kafka"],"other":{"interests":"basketball"}}
{"name":"tom","age":18,"skill":["java","scala"],"other":{}}

4.小结

本文对 avro 的格式定义、编码方式、以及实际存储的文件格式进行了详细说明,最后也以一个实际例子进行了对照说明。另外, 在官网中还涉及 rpc 的使用、mapreduce 的使用,这里就没有展开说明,有兴趣的可移步官网进行查阅。

这篇关于【大数据】详解 AVRO 格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490451

相关文章

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF