Docker通过EFK(Elasticsearch + Fluentd + Kibana)查询日志

2023-12-13 23:38

本文主要是介绍Docker通过EFK(Elasticsearch + Fluentd + Kibana)查询日志,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

Elasticsearch是一个开源搜索引擎,以易用性着称。kibana是一个图形界面,可以在上面条件检索存储在ElasticSearch里数据,相当于提供了ES的可视化操作管理器。

fluentd

fluentd是一个针对日志的收集、处理、转发系统。通过丰富的插件系统,可以收集来自于各种系统或应用的日志,转化为用户指定的格式后,转发到用户所指定的日志存储系统之中。

fluentd 常常被拿来和Logstash比较,我们常说ELK,L就是这个agent。fluentd 是随着Docker,GCP 和es一起流行起来的agent。

这篇文章里概括一下的话,有以下区别:

  • fluentd 比 logstash 更省资源;
  • 更轻量级的 fluent-bid 对应 filebeat,作为部署在结点上的日志收集器;
  • fluentd 有更多强大、开放的插件数量和社区。插件列表这一点值得多说,插件太多了,也非常灵活,规则也不复杂。

 

基本的架构

 

 

这里主要解决的问题是日志查询,日志来源是docker。我们使用docker部署任务时,可以使用docker logs -f <容器id>查看日志,也可以去/var/lib/docker/containers/<容器id>/<容器id>-json.log查看日志文件。但是这都很难去做查询,本文介绍的EFK就可以解决这个问题。

我们会创建四个容器:

  • httpd (发送日志给EFK)
  • Fluentd
  • Elasticsearch
  • Kibana

 

环境说明:

请安装最新的docker及docker-compose,老版本会有些问题。

docker安装,请参考链接:

https://www.cnblogs.com/xiao987334176/p/11771657.html

docker-compose安装,请参考链接:

https://www.cnblogs.com/xiao987334176/p/12377113.html

 

操作系统:centos 7.6

配置:2核8g

docker版本:19.03.6

docker-compose版本:1.24.1

 

本文使用一台centos7.6服务器,来演示EFK。

注意:内存至少在4g或者以上。

 

二、docker-compose运行EFK

目录结构

 创建一个空目录

mkdir /opt/efk/

目录结构如下:

./
├── docker-compose.yml
└── fluentd├── conf│   └── fluent.conf└── Dockerfile

 

docker-compose.yml

version: '2'
services:web:image: httpdports:- "1080:80" #避免和默认的80端口冲突links:- fluentdlogging:driver: "fluentd"options:fluentd-address: localhost:24224tag: httpd.accessfluentd:build: ./fluentdvolumes:- ./fluentd/conf:/fluentd/etclinks:- "elasticsearch"ports:- "24224:24224"- "24224:24224/udp"elasticsearch:image: elasticsearch:7.6.0environment:- discovery.type=single-nodeexpose:- 9200ports:- "9200:9200"kibana:image: kibana:7.6.0links:- "elasticsearch"ports:- "5601:5601"
View Code

注意:elasticsearch 7.6.0要使用单机模式,必须传入环境变量discovery.type=single-node

 

所有web里的日志会自动发送到fluentd-address: localhost:24224,也就是fluentd容器。

Elasticsearch 和 Kibana是目前最新的版本7.6.0,如果想要选择更新的,可以去这里查看

Elasticsearch image tags in DockerHub

Kibana image tags in DockerHub

 

Fluentd的配置和插件

新建文件fluentd/Dockerfile,使用官方镜像Fluentd’s official Docker image,安装需要的插件

# fluentd/Dockerfile
FROM fluent/fluentd:v0.12-debian
RUN ["gem", "install", "fluent-plugin-elasticsearch", "--no-rdoc", "--no-ri", "--version", "1.9.7"]

 

然后新建文件fluentd/conf/fluent.conf,编写Fluentd的配置文件

<source>@type forwardport 24224bind 0.0.0.0
</source>
<match *.**>@type copy<store>@type elasticsearchhost elasticsearchport 9200logstash_format truelogstash_prefix fluentdlogstash_dateformat %Y%m%dinclude_tag_key truetype_name access_logtag_key @log_nameflush_interval 1s</store><store>@type stdout</store>
</match>
View Code

官方设置文档config-file

 

修改/etc/sysctl.conf 

此参数一定要改,否则Elasticsearch 无法启动

vm.max_map_count = 2621440

加载配置

sysctl -p

 

启动容器

在后台启动,使用docker-compose up -d

# docker-compose up -d
Starting efk_elasticsearch_1 ... done
Starting efk_fluentd_1       ... done
Starting efk_kibana_1        ... done
Starting efk_web_1           ... done

 

查看所有容器

# docker ps
CONTAINER ID        IMAGE                 COMMAND                  CREATED             STATUS              PORTS                                                          NAMES
d82b1a16c970        httpd                 "httpd-foreground"       21 hours ago        Up 51 minutes       0.0.0.0:1080->80/tcp                                           efk_web_1
1085be0f9c6e        efk_fluentd           "tini -- /bin/entryp…"   21 hours ago        Up 51 minutes       5140/tcp, 0.0.0.0:24224->24224/tcp, 0.0.0.0:24224->24224/udp   efk_fluentd_1
3e837917f4cf        kibana:7.6.0          "/usr/local/bin/kiba…"   21 hours ago        Up 51 minutes       0.0.0.0:5601->5601/tcp                                         efk_kibana_1
3d860ca7e0db        elasticsearch:7.6.0   "/usr/local/bin/dock…"   21 hours ago        Up 51 minutes       0.0.0.0:9200->9200/tcp, 9300/tcp                               efk_elasticsearch_1

 

产生日志

使用curl执行3遍

curl http://localhost:1080/
curl http://localhost:1080/
curl http://localhost:1080/

 

查看日志

打开http://localhost:5601,提示需要先建索引,输入fluentd-*刷新即可

 

 

选择时间戳

 

 

 

 去Discover页面,然后就可以看到之前的日志了。

 

 

如何接入其他docker日志

这里是以docker-compose形式启动的一个服务,如果还有别的任务需要将日志发送到fluentd,需要这几个步骤。

默认情况下,docker-compose会为我们的应用创建一个网络,服务的每个容器都会加入该网络中。这样,容器就可被该网络中的其他容器访问,不仅如此,该容器还能以服务名称作为hostname被其他容器访问。

所以我们首先需要找到我们现在创建的EFK的网络名,

# docker network ls
NETWORK ID          NAME                DRIVER              SCOPE
afa576d45dff        bridge              bridge              local
27d56becedb8        efk_default         bridge              local
1d5b4653e1df        host                host                local
901f8a349049        none                null                local

 

我是在efk目录下创建的docker-compose.yml文件,所以这里默认的名字就是efk_default。

再看看之前web的设置

web:image: httpdports:- "1080:80" #避免和默认的80端口冲突links:- fluentdlogging:driver: "fluentd"options:fluentd-address: localhost:24224tag: httpd.access

有几个关键设置是:links和logging,link 用于容器直接的互通,logging则是日志的输出设置。

那我们这里再启动一个新docker需要这些设置

docker run \--link efk_fluentd_1 \--net efk_default  \--log-driver=fluentd \--log-opt fluentd-address=localhost:24224 \--log-opt tag=httpd.access \-d hello-world

我们去kibana看看,果然,日志已经发送到kibana了。

搜索hello

如果是其他机器,需要指定fluentd ip,比如:

docker run \--log-driver=fluentd \--log-opt fluentd-address=172.19.155.138:24224 \--log-opt tag=httpd.access \-d hello-world

 

最后想要做的就是如何在一台服务器上搜集所有的日志,理论上来说,只需要一台服务器部署上EFK,暴露端口,其他服务器去发送即可,实际上还没试过。

 

本文参考链接:

https://zhuanlan.zhihu.com/p/63105931

这篇关于Docker通过EFK(Elasticsearch + Fluentd + Kibana)查询日志的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490361

相关文章

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

mysql查询使用_rowid虚拟列的示例

《mysql查询使用_rowid虚拟列的示例》MySQL中,_rowid是InnoDB虚拟列,用于无主键表的行ID查询,若存在主键或唯一列,则指向其,否则使用隐藏ID(不稳定),推荐使用ROW_NUM... 目录1. 基本查询(适用于没有主键的表)2. 检查表是否支持 _rowid3. 注意事项4. 最佳实