大模型应用_AutoGPT

2023-12-13 17:04
文章标签 应用 模型 autogpt

本文主要是介绍大模型应用_AutoGPT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 功能

  • 整体功能,想解决什么问题
    单独使用 ChatGPT 时,只提供基本的聊天,无法实现具体的功能,如果想提供某种功能,则需要结合程序实现。AutoGPT目标是建立和使用 AI Agent,设定一个或多个目标,AutoGPT自动拆解成相对应的任务,并派出 Agent 执行任务直到目标达成,无需编程。
  • 当前解决了什么问题,哪些问题解决不了
    形成了较为完善的整体流程。在解决具体问题过程中,还需要人的进一步参与,仅使用 GPT 和简单的交互,还是不足以解决一般情况下遇到的问题。
  • 提供哪些功能点,其中哪些是刚需
    建立Agent和整体调用流程是其核心功能。个人感觉这个工具并不求大而全,基本思路都是围绕其主功能扩展。除主功能以外,它还提供了:黑客马拉松,benchmark 基线 等功能,供二次开发者使用。
  • 用户使用难度,操作逻辑是否过于复杂
    使用 docker 方式运行比较简单,只需要设置env,基本上是开箱即用;使用其前端需要进一步设置。具体工作时,虽然都是文本交互,但还是需要一些学习成本。

2 技术栈

  • 技术栈是什么
    • 前端使用 Dart+Flutter 开发,修改其前端有一定学习成本。
    • Python 包管理使用 Poetry,依赖包在 pyproject.toml 中设置。
    • LLM主要支持 OPENAI 的 GPT,使用的 openai 的 api 也比较旧。
    • 部署使用 docker + docker-compose
    • 主循环入口:autogpt/autogpt/app/main.py
  • 现有底层工具消化了哪些常用功能
    • 对外部强依赖较少,在配置文件env中可查看其可选组件
  • 代码分析(使用cloc工具统计)
    • docker 大小 1.99G
    • 代码下载 304M,其中主要占空间的是 .git 和 benchmark/reports/
    • 代码量(不计 json 文件和生成的js),其中 Python 24032行,dart 4590行,即以 Python 代码为主,包含少量前端界面;代码量不小,Python代码难度不高。
    • 核心代码:aotogpt/autogpt/autogpt目录下的python文件;其中 core 目录内容相对比较多,它的目标是重构 autogpt,尚在开发之中。

3 商业模式

AutoGPT 首先提供了一个完整的架构和可用的全功能。但它不是一个已经把各种问题解决的很好,拿来就能用的具体工具。从当前版本看,它更像是一个以架构为主,提供平台,希望大家开发和调优专门解决具体问题的 agent。并提供展示和比较的平台(黑客马拉松:Hackathon),各种 benchmark 基线(排行榜:https://leaderboard.agpt.co/),评测,底层结构和基本工具。
鼓励大家基于其架构开发解决具体问题的 agent,从而建立一种以Agent为核心的用大模型解决具体问题的生态。

4 安装

4.1 build docker image
$ git clone 
$ cd AutoGPT/autogpts/autogpt
$ cp .env.template .env
$ vi .env # 至少修改 OPENAI_API_KEY, OPENAI_API_BASE_URL,建议修改 LLM 以节省费用
$ docker build --build-arg HTTP_PROXY=xxx --build-arg HTTPS_PROXY=xxx . -t auto-gpt
4.2 运行
$ docker run --rm --env-file .env -p 8000:8000 -e HTTPS_PROXY="xxx" -e HTTPS_PROXY="xxx" -it auto-gpt run
4.3 使用体会

如果上述安装运行正常,则出现提示,让用户输入项目描述,然后程序将工作划分为多个步骤,每一步与用户确认,在交互过程中执行。

5 资料

Document: https://docs.agpt.co/

这篇关于大模型应用_AutoGPT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489227

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD