asyncio oracle 异步,Python使用asyncio+aiohttp异步爬取猫眼电影专业版

本文主要是介绍asyncio oracle 异步,Python使用asyncio+aiohttp异步爬取猫眼电影专业版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

asyncio是从pytohn3.4开始添加到标准库中的一个强大的异步并发库,可以很好地解决python中高并发的问题,入门学习可以参考官方文档

并发访问能极大的提高爬虫的性能,但是requests访问网页是阻塞的,无法并发,所以我们需要一个更牛逼的库 aiohttp ,它的用法与requests相似,可以看成是异步版的requests,下面通过实战爬取猫眼电影专业版来熟悉它们的使用:

1. 分析

分析网页源代码发现猫眼专业版是一个动态网页,其中的数据都是后台传送的,打开F12调试工具,再刷新网页选择XHR后发现第一条就是后台发来的电影数据,由此得到接口

3544800

在这里插入图片描述

2. 异步爬取

创建20个任务来并发爬取20天的电影信息并写入csv文件,同时计算一下耗费的时间

import asyncio

from aiohttp import ClientSession

import aiohttp

import time

import csv

import ssl

ssl._create_default_https_context = ssl._create_unverified_context

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '

'AppleWebKit/537.36 (KHTML, like Gecko) '

'Chrome/67.0.3396.99 Safari/537.36'}

# 协程函数,完成一个无阻塞的任务

async def get_one_page(url):

try:

conn = aiohttp.TCPConnector(verify_ssl=False) # 防止ssl报错

async with aiohttp.ClientSession(connector=conn) as session: # 创建session

async with session.get(url, headers=headers) as r:

# 返回解析为字典的电影数据

return await r.json()

except Exception as e:

print('请求异常: ' + str(e))

return {}

# 解析函数,提取每一条内容并写入csv文件

def parse_one_page(movie_dict, writer):

try:

movie_list = movie_dict['data']['list']

for movie in movie_list:

movie_name = movie['movieName']

release = movie['releaseInfo']

sum_box = movie['sumBoxInfo']

box_info = movie['boxInfo']

box_rate = movie['boxRate']

show_info = movie['showInfo']

show_rate = movie['showRate']

avg_show_view = movie['avgShowView']

avg_seat_view = movie['avgSeatView']

writer.writerow([movie_name, release, sum_box, box_info, box_rate,

show_info, show_rate, avg_show_view, avg_seat_view])

return('写入成功')

except Exception as e:

return('解析异常: ' + str(e))

# 并发爬取

async def main():

# 待访问的20个URL链接

urls = ['https://box.maoyan.com/promovie/api/box/second.json?beginDate=201904{}{}'.format(i, j) for i in range(1, 3) for j in range(10)]

# 任务列表

tasks = [get_one_page(url) for url in urls]

# 并发执行并保存每一个任务的返回结果

results = await asyncio.gather(*tasks)

# 处理每一个结果

with open('pro_info.csv', 'w') as f:

writer = csv.writer(f)

for result in results:

print(parse_one_page(result, writer))

if __name__ == "__main__":

start = time.time()

# asyncio.run(main())

# python3.7之前的写法

loop = asyncio.get_event_loop()

loop.run_until_complete(main())

loop.close()

print(time.time()-start)

3. 对比同步爬取

import requests

import csv

import time

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' 'AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/67.0.3396.99 Safari/537.36'} def get_one_page(url): try: r = requests.get(url, headers=headers) r.raise_for_status() r.encoding = r.apparent_encoding return r.json() except Exception as e: print('请求异常: ' + e) return {} def parse_one_page(movie_dict, writer): try: movie_list = movie_dict['data']['list'] for movie in movie_list: movie_name = movie['movieName'] release = movie['releaseInfo'] sum_box = movie['sumBoxInfo'] box_info = movie['boxInfo'] box_rate = movie['boxRate'] show_info = movie['showInfo'] show_rate = movie['showRate'] avg_show_view = movie['avgShowView'] avg_seat_view = movie['avgSeatView'] writer.writerow([movie_name, release, sum_box, box_info, box_rate, show_info, show_rate, avg_show_view, avg_seat_view]) print('写入成功') except Exception as e: print('解析异常: ' + e) def main(): # 待访问的20个URL链接 urls = ['https://box.maoyan.com/promovie/api/box/second.json?beginDate=201903{}{}'.format(i, j) for i in range(1, 3) for j in range(10)] with open('out/pro_info.csv', 'w') as f: writer = csv.writer(f) for url in urls: # 逐一处理 movie_dict = get_one_page(url) parse_one_page(movie_dict, writer) if __name__ == '__main__': a = time.time() main() print(time.time() - a)

3544800

在这里插入图片描述

可以看到使用asyncio+aiohttp的异步爬取方式要比简单的requests同步爬取快上不少,尤其是爬取大量网页的时候,这种差距会非常明显。

这篇关于asyncio oracle 异步,Python使用asyncio+aiohttp异步爬取猫眼电影专业版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488887

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos