创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式

本文主要是介绍创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 创建 SparkContext 对象
  • RDD 创建方式
    • 1. 创建并行化集合RDD(parallelize、makeRDD)
      • parallelize
      • makeRDD
    • 2. 从外部存储系统创建RDD(textfile)
    • 3. 从RDD衍生新的RDD(原地计算)
    • 4. 小文件读取(wholeTextFiles)
  • RDD 分区数目(总结)
    • 获取 RDD 分区数目的俩种方式
    • RDD 分区的数据取决于那些因素?


创建 SparkContext 对象

SparkApplication应用,创建SparkContext对象,及应用结束关闭资源,代码如下:

import org.apache.spark.{SparkConf, SparkContext}object MydemoTest {def main(args: Array[String]): Unit = {// 构建SparkContext对象val sc: SparkContext = {// a. 创建SparkConf对象val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.stripSuffix("$")).setMaster("local[2]")// b. 传递SparkConf对象,创建实例val context = SparkContext.getOrCreate(sparkConf) //有就获取,没有创建// c. 返回实例对象context}// 应用结束,关闭资源sc.stop()}}

或者写的简单点

val conf = new SparkConf().setAppName("word_count").setMaster("local[6]")
val sc = new SparkContext(conf)

RDD 创建方式

1. 创建并行化集合RDD(parallelize、makeRDD)

parallelize

源码:

def parallelize[T: ClassTag](seq: Seq[T],numSlices: Int = defaultParallelism
): RDD[T]

需要传入的是一个Seq集合,和一个分区数Int


makeRDD

源码结构和parallelize一样,还是调用的parallelize。

两者区别:(源码的区别)

  • parallelize可以不指定分区数,使用比较多。
  • makeRDD不指定就会调用成别的同名方法,可以看下源码来验证,一般不用。

上述俩种方式的写法如下:

//从本地集合创建
@Test
def rddCreationLocal() = {val seq = Seq("Hello1", "hello2", "Hello3")val rdd1: RDD[String] = sc.parallelize(seq, 2)  //指定分区数目val rdd2: RDD[String] = sc.makeRDD(seq, 2) //底层依旧调用的parallelize
}

2. 从外部存储系统创建RDD(textfile)

由外部存储系统的数据集创建,包括本地的文件系统,还有所有 Hadoop支持的数据集,比如HDFS、Cassandra、HBase 等。实际使用最多的方法:textFile,读取HDFS或LocalFS上文本文件,指定文件路径和RDD分区数目。

源码:

def textFile(path : scala.Predef.String, minPartitions : scala.Int = { /* compiled code */ }
) : org.apache.spark.rdd.RDD[scala.Predef.String] = { /* compiled code */ }

注意:

  • 传入的文件路径,可以是 hdfs://… , 也可以是 file://… 。这种方式分为在集群中执行和在本地执行,在集群中是hdfs://,本地则是file:// 。
  • 支持分区,如果传入的path是 hdfs://… ,分区则由hdfs文件的block决定。默认情况下,RDD分区数目等于HDFS上Block块数目。其中文件路径:最好是全路径,可以指定文件名称,可以指定文件目录,可以使用通配符指定。
  • 支持外部数据源,比如阿里源等等。

3. 从RDD衍生新的RDD(原地计算)

通过在RDD上进行算子操作,会生成新的RDD,那么新的RDD是原来的RDD吗?提一个概念,原地计算?类比一下字符串操作 str.substr 返回的是新的 str。那么这个叫做非原地计算,那么原来的字符串变了吗?当然没变?同理RDD不可变!!!

在这里插入图片描述


4. 小文件读取(wholeTextFiles)

在实际项目中,有时往往处理的数据文件属于小文件(每个文件数据数据量很小,比如KB,几十MB等),文件数量又很大,如果一个个文件读取为RDD的一个个分区,计算数据时很耗时性能低下,使用SparkContext中提供:wholeTextFiles类,专门读取小文件数据。

def wholeTextFiles(path: String,	//文件存储目录minPartitions: Int = defaultMinPartitions	//RDD分区数目
): RDD[(String, String)]

范例演示:读取100个小文件数据,每个文件大小小于1MB,设置RDD分区数目为2。

实际项目中,可以先使用wholeTextFiles方法读取数据,设置适当RDD分区,再将数据保存到文件系统,以便后续应用读取处理,大大提升性能。


RDD 分区数目(总结)

在讲解 RDD 属性时,多次提到了分区(partition)的概念。分区是一个偏物理层的概念,也是 RDD 并行计算的核心。数据在 RDD 内部被切分为多个子集合,每个子集合可以被认为是一个分区,运算逻辑最小会被应用在每一个分区上,每个分区是由一个单独的任务(task)来运行的,所以分区数越多,整个应用的并行度也会越高。

获取 RDD 分区数目的俩种方式

  • rdd.getNumPartitions
  • rdd.partitions.length

RDD 分区的数据取决于那些因素?

  • 第一点:RDD分区的原则是使得分区的个数尽量等于集群中的CPU核心(core)数目,这样可以充分利用CPU的计算资源;
  • 第二点:在实际中为了更加充分的压榨CPU的计算资源,会把并行度设置为cpu核数的2~3倍;
  • 第三点:RDD分区数和启动时指定的核数、调用方法时指定的分区数、如文件本身分区数有关系,具体如下说明:
    • 1.启动的时候指定的CPU核数确定了一个参数值:
      • spark.default.parallelism = 指定的CPU核数(集群模式最小为2)
    • 2.对于Scala集合调用parallellize(集合,分区数)方法:
      • 如果没有指定分区数目,就使用 spark.default.parallelism
      • 如果指定了就使用指定的分区数(不要指定大于spark.default.parallelism)
    • 3.对于textFile(文件,分区数)
      • defaultMinPartitons
        • 如果没有指定分区数目 sc.defaultMinPartitions=min(defaultParallelism, 2)
        • 如果指定了就使用指定的分区数 sc.defaultMinPartitions=指定的分区数rdd的分区数
      • rdd的分区数
        • 对于本地文件:
          • rdd的分区数 = max(本地file的分片数, sc.defaultMinPartitions)
        • 对于HDFS文件:
          • rdd的分区数 = max(hdfs文件的block数目,sc.defaultMinPartitions)
        • 所以如果分配的核数为多个,且从文件中读取数据创建RDD,即使hdfs文件只有1个切片,最后的Spark的RDD的partition数也有可能是2

这篇关于创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488191

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st