创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式

本文主要是介绍创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 创建 SparkContext 对象
  • RDD 创建方式
    • 1. 创建并行化集合RDD(parallelize、makeRDD)
      • parallelize
      • makeRDD
    • 2. 从外部存储系统创建RDD(textfile)
    • 3. 从RDD衍生新的RDD(原地计算)
    • 4. 小文件读取(wholeTextFiles)
  • RDD 分区数目(总结)
    • 获取 RDD 分区数目的俩种方式
    • RDD 分区的数据取决于那些因素?


创建 SparkContext 对象

SparkApplication应用,创建SparkContext对象,及应用结束关闭资源,代码如下:

import org.apache.spark.{SparkConf, SparkContext}object MydemoTest {def main(args: Array[String]): Unit = {// 构建SparkContext对象val sc: SparkContext = {// a. 创建SparkConf对象val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.stripSuffix("$")).setMaster("local[2]")// b. 传递SparkConf对象,创建实例val context = SparkContext.getOrCreate(sparkConf) //有就获取,没有创建// c. 返回实例对象context}// 应用结束,关闭资源sc.stop()}}

或者写的简单点

val conf = new SparkConf().setAppName("word_count").setMaster("local[6]")
val sc = new SparkContext(conf)

RDD 创建方式

1. 创建并行化集合RDD(parallelize、makeRDD)

parallelize

源码:

def parallelize[T: ClassTag](seq: Seq[T],numSlices: Int = defaultParallelism
): RDD[T]

需要传入的是一个Seq集合,和一个分区数Int


makeRDD

源码结构和parallelize一样,还是调用的parallelize。

两者区别:(源码的区别)

  • parallelize可以不指定分区数,使用比较多。
  • makeRDD不指定就会调用成别的同名方法,可以看下源码来验证,一般不用。

上述俩种方式的写法如下:

//从本地集合创建
@Test
def rddCreationLocal() = {val seq = Seq("Hello1", "hello2", "Hello3")val rdd1: RDD[String] = sc.parallelize(seq, 2)  //指定分区数目val rdd2: RDD[String] = sc.makeRDD(seq, 2) //底层依旧调用的parallelize
}

2. 从外部存储系统创建RDD(textfile)

由外部存储系统的数据集创建,包括本地的文件系统,还有所有 Hadoop支持的数据集,比如HDFS、Cassandra、HBase 等。实际使用最多的方法:textFile,读取HDFS或LocalFS上文本文件,指定文件路径和RDD分区数目。

源码:

def textFile(path : scala.Predef.String, minPartitions : scala.Int = { /* compiled code */ }
) : org.apache.spark.rdd.RDD[scala.Predef.String] = { /* compiled code */ }

注意:

  • 传入的文件路径,可以是 hdfs://… , 也可以是 file://… 。这种方式分为在集群中执行和在本地执行,在集群中是hdfs://,本地则是file:// 。
  • 支持分区,如果传入的path是 hdfs://… ,分区则由hdfs文件的block决定。默认情况下,RDD分区数目等于HDFS上Block块数目。其中文件路径:最好是全路径,可以指定文件名称,可以指定文件目录,可以使用通配符指定。
  • 支持外部数据源,比如阿里源等等。

3. 从RDD衍生新的RDD(原地计算)

通过在RDD上进行算子操作,会生成新的RDD,那么新的RDD是原来的RDD吗?提一个概念,原地计算?类比一下字符串操作 str.substr 返回的是新的 str。那么这个叫做非原地计算,那么原来的字符串变了吗?当然没变?同理RDD不可变!!!

在这里插入图片描述


4. 小文件读取(wholeTextFiles)

在实际项目中,有时往往处理的数据文件属于小文件(每个文件数据数据量很小,比如KB,几十MB等),文件数量又很大,如果一个个文件读取为RDD的一个个分区,计算数据时很耗时性能低下,使用SparkContext中提供:wholeTextFiles类,专门读取小文件数据。

def wholeTextFiles(path: String,	//文件存储目录minPartitions: Int = defaultMinPartitions	//RDD分区数目
): RDD[(String, String)]

范例演示:读取100个小文件数据,每个文件大小小于1MB,设置RDD分区数目为2。

实际项目中,可以先使用wholeTextFiles方法读取数据,设置适当RDD分区,再将数据保存到文件系统,以便后续应用读取处理,大大提升性能。


RDD 分区数目(总结)

在讲解 RDD 属性时,多次提到了分区(partition)的概念。分区是一个偏物理层的概念,也是 RDD 并行计算的核心。数据在 RDD 内部被切分为多个子集合,每个子集合可以被认为是一个分区,运算逻辑最小会被应用在每一个分区上,每个分区是由一个单独的任务(task)来运行的,所以分区数越多,整个应用的并行度也会越高。

获取 RDD 分区数目的俩种方式

  • rdd.getNumPartitions
  • rdd.partitions.length

RDD 分区的数据取决于那些因素?

  • 第一点:RDD分区的原则是使得分区的个数尽量等于集群中的CPU核心(core)数目,这样可以充分利用CPU的计算资源;
  • 第二点:在实际中为了更加充分的压榨CPU的计算资源,会把并行度设置为cpu核数的2~3倍;
  • 第三点:RDD分区数和启动时指定的核数、调用方法时指定的分区数、如文件本身分区数有关系,具体如下说明:
    • 1.启动的时候指定的CPU核数确定了一个参数值:
      • spark.default.parallelism = 指定的CPU核数(集群模式最小为2)
    • 2.对于Scala集合调用parallellize(集合,分区数)方法:
      • 如果没有指定分区数目,就使用 spark.default.parallelism
      • 如果指定了就使用指定的分区数(不要指定大于spark.default.parallelism)
    • 3.对于textFile(文件,分区数)
      • defaultMinPartitons
        • 如果没有指定分区数目 sc.defaultMinPartitions=min(defaultParallelism, 2)
        • 如果指定了就使用指定的分区数 sc.defaultMinPartitions=指定的分区数rdd的分区数
      • rdd的分区数
        • 对于本地文件:
          • rdd的分区数 = max(本地file的分片数, sc.defaultMinPartitions)
        • 对于HDFS文件:
          • rdd的分区数 = max(hdfs文件的block数目,sc.defaultMinPartitions)
        • 所以如果分配的核数为多个,且从文件中读取数据创建RDD,即使hdfs文件只有1个切片,最后的Spark的RDD的partition数也有可能是2

这篇关于创建RDD的常用方式【并行化集合创建、从外部存储系统创建、RDD衍生、小文件读取】,创建SparkContext对象的方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488191

相关文章

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Linux之systemV共享内存方式

《Linux之systemV共享内存方式》:本文主要介绍Linux之systemV共享内存方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、工作原理二、系统调用接口1、申请共享内存(一)key的获取(二)共享内存的申请2、将共享内存段连接到进程地址空间3、将

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Spring Boot读取配置文件的五种方式小结

《SpringBoot读取配置文件的五种方式小结》SpringBoot提供了灵活多样的方式来读取配置文件,这篇文章为大家介绍了5种常见的读取方式,文中的示例代码简洁易懂,大家可以根据自己的需要进... 目录1. 配置文件位置与加载顺序2. 读取配置文件的方式汇总方式一:使用 @Value 注解读取配置方式二