python实现形态学建筑物指数MBI提取建筑物及数据获取

2023-12-13 09:28

本文主要是介绍python实现形态学建筑物指数MBI提取建筑物及数据获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

    形态学建筑物指数MBI通过建立建筑物的隐式特征和形态学算子之间的关系进行建筑物的提取[1]。

原理

图片

上图源自[2]。

实验数据

简单找了一张小图片:

图片

test.jpg

代码

为了支持遥感图像,读写数据函数都是利用GDAL写的。

import numpy as np
import gdal#  读取tif数据集
def readTif(fileName, xoff = 0, yoff = 0, data_width = 0, data_height = 0):dataset = gdal.Open(fileName)if dataset == None:print(fileName + "文件无法打开")#  栅格矩阵的列数width = dataset.RasterXSize #  栅格矩阵的行数height = dataset.RasterYSize #  波段数bands = dataset.RasterCount #  获取数据if(data_width == 0 and data_height == 0):data_width = widthdata_height = heightdata = dataset.ReadAsArray(xoff, yoff, data_width, data_height)#  获取仿射矩阵信息geotrans = dataset.GetGeoTransform()#  获取投影信息proj = dataset.GetProjection()return width, height, bands, data, geotrans, proj#  保存tif文件函数
def writeTiff(im_data, im_geotrans, im_proj, path):if 'int8' in im_data.dtype.name:datatype = gdal.GDT_Byteelif 'int16' in im_data.dtype.name:datatype = gdal.GDT_UInt16else:datatype = gdal.GDT_Float32if len(im_data.shape) == 3:im_bands, im_height, im_width = im_data.shapeelif len(im_data.shape) == 2:im_data = np.array([im_data])im_bands, im_height, im_width = im_data.shape#创建文件driver = gdal.GetDriverByName("GTiff")dataset = driver.Create(path, int(im_width), int(im_height), int(im_bands), datatype)if(dataset!= None):dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数dataset.SetProjection(im_proj) #写入投影for i in range(im_bands):dataset.GetRasterBand(i+1).WriteArray(im_data[i])del dataset

接下来就是就算MBI,代码注释很详细,也可以对着原理来看。

from skimage.morphology import square, white_tophat
from skimage.transform import rotate#  计算MBI
#  s_min: 结构元素大小最小值
#  s_max: 结构元素大小最大值
#  delta_s: 颗粒测定的间隔
def CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s):#  读取图像的相关信息width, height, bands, image, geotrans, proj = readTif(filePath)#  多光谱带的最大值对应于具有高反射率的特征->取光谱带最大值作为后续计算数据gray = np.max(image, 0)#  为消除白帽边缘效应,进行边缘补零gray = np.pad(gray, ((s_min, s_min), (s_min, s_min)), 'constant', constant_values=(0, 0))#  形态学剖面集合MP_MBI_list = []#  差分形态学剖面DMP集合DMP_MBI_list = []#  计算形态学剖面for i in range(s_min, s_max + 1, 2 * delta_s):print("s = ", i)#  大小为i×i的单位矩阵SE_intermediate = square(i)#  只保留中间一行为1,其他设置为0SE_intermediate[ : int((i - 1) / 2), :] = 0SE_intermediate[int(((i - 1) / 2) + 1) : , :] = 0#  SE_intermediate表示结构元素,用于设定局部区域的形状和大小#  旋转0 45 90 135°for angle in range(0, 180, 45):SE_intermediate = rotate(SE_intermediate, angle, order = 0, preserve_range = True).astype('uint8')#  多角度形态学白帽重构MP_MBI = white_tophat(gray, selem = SE_intermediate)MP_MBI_list.append(MP_MBI)#  计算差分形态学剖面DMPfor j in range(4, len(MP_MBI_list), 1):#  差的绝对值DMP_MBI = np.absolute(MP_MBI_list[j] - MP_MBI_list[j - 4])DMP_MBI_list.append(DMP_MBI)#  计算MBIMBI = np.sum(DMP_MBI_list, axis = 0) / (4 * (((s_max - s_min) / delta_s) + 1))#  去除多余边缘结果MBI = MBI[s_min : MBI.shape[0] - s_min, s_min : MBI.shape[1] - s_min]#  写入文件writeTiff(MBI, geotrans, proj, MBIPath)#  原图像
filePath = r"test.jpg"
#  MBI结果
MBIPath = r"test_mbi.jpg"
#  建筑物提取结果
buildingPath = r"test_building.jpg"
#  结构元素大小最小值
s_min = 3
#  结构元素大小最大值
s_max = 20
#  测定的间隔
delta_s = 1
#  计算MBI
CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s)

图片

test_mbi.jpg

MBI计算出来了以后,我们就要取阈值来提取建筑物了,阈值可以手动设置,也可以用算法自动求出阈值,这里我们采用OTSU算法[3]。

from skimage.filters import threshold_otsudef BuildingExtraction_otsu(MBIPath, buildingPath):width, height, bands, image, geotrans, proj = readTif(MBIPath)thresh = threshold_otsu(image) #返回一个阈值image[image>thresh] = 255image[image<=thresh] = 0image = image.astype(np.uint8)writeTiff(image, geotrans, proj, buildingPath)#  otsu自动计算阈值提取建筑物
BuildingExtraction_otsu(MBIPath, buildingPath)

图片

test_building.jpg

目视对照一下的话,感觉效果还不错。

参考

  1. ^Huang X and Zhang L. 2011. A multidirectional and multiscale morphological index for automatic building extraction from multispectral geoeye-1 imagery. Photogrammetric Engineering and Remote Sensing, 77(7), 721-732. [DOI: 10.14358/PERS.77.7.721]

  2. ^魏旭,高小明,岳庆兴,郭正胜.一种结合MBI和SLIC算法的遥感影像建筑物提取方法[J].测绘与空间地理信息,2019,42(10):100-103.

  3. ^otsu(大津算法)-百度百科 https://baike.baidu.com/item/otsu/16252828?fr=aladdin

来源:应用推广部

供稿:技术研发部

编辑:方梅

这篇关于python实现形态学建筑物指数MBI提取建筑物及数据获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487928

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3