游艇租赁最小代价——动态规划求解

2023-12-13 08:50

本文主要是介绍游艇租赁最小代价——动态规划求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:江上有6个游艇站,游客可以从任意一个站租赁游艇,并在其下游任意一个站归还游艇,不同站之间的费用不同。

游艇出租站i到j之间的租金为r(i,j)。上下游情况以及各站点之间的费用如下:

图片来源于陈小玉老师的《趣学算法》

思想:假设i到j经过在k停靠有最优情况,那么,原问题就分解为求解  i->k  子问题最优解与  k->j  子问题最优解的情况。

分析:

1.上述指出上游可以到下游中任意一个站规划游艇,那么,只能是序号低的站点到序号高的站点,所以,在租金矩阵中只会存在右三角的部分。

2.上述问题无外乎考虑的是直达还是经过中转然后到达目的站点。

注:我们需要进行以下推论,若存在1,2,3站点,1->3有两种情况,要么1->3,要么1->2->3,要是经过2站点中转,则1->3的花费最小,那么我们就知道了1->3的最佳策略是在2站点进行中转。

那么,继续,存在1,2,3,4站点,1->4的情况就更多了些,可以是1->4,也可以是1->2->4,或者是1->3->4,又或者是1->2->3->4这4中情况,有上述中的假设,1->3的最佳策略是在2站点进行中转,那么用于1->4策略中,1->2->3->4的情况一定优于1->3->4的情况。所以,这就引出了动态规划的核心要点,即原问题的最优解一定包含了子问题的最优解,即1->4(1->3->4)的最优解情况一定包含了1->3的最优解情况,那么,我们在开始要记录了子问题的最优解情况,后续则可以直接使用,

我们开始建立最优值的递归式:

已知我们的数据结构:m[i][j]的值表示两点之间的最短花费,s[i][j]的值表示两点之间的中转节点。

那么,若i==j,则m[i][j]==0;

若j==i+1,则m[i][j]==r[i][j],即m[i][j]表示两点间的直达代价,那么s[i][j]==0,因为s[i][j]表示两者间的中转点,而两点为直达,所以没有中转点;

若j>i+1,即两点间存在一个或者一个以上的中转点时,m[i][j]==min{m[i][k]+m[k][j],r[i][j]}

核心思想:假设i到j经过在k停靠有最优情况,那么,原问题就分解为求解  i->k  子问题最优解与  k->j  子问题最优解的情况,逐渐往下找出最小规模子问题的情况。

同时还需要注意一点就是,我们必须求出规模最小时的最优值,然后才能递推出规模较大时的最优值。而规模最小时为两个相邻点的情况,接着三个点,四个点......

但是我们知道i->k的代价,k->j的代价都是最小的(子问题最优用于母问题最优)

而事实上,i->k的最优情况在分析i->j之前我们已经得到,我们直接用就可以,没必要再重新分析。就是比如先以三个点为例,结果1->3的代价中,路径1->2->3的代价是低于路径1->3代价的,那么,我们就会在选择中记录要是有结果1->3的情况,我们就默认选择路径1->2->3。

同理在1->4的结果中,我们会尝试路径1->4,1->2->4,1->2->3->4而不会去尝试1->3->4。而在计算经过节点3进行中转的情况时,我们只需要关注的是3->4之间的代价,而结果1->3的代价已经由路径1->2->3求得。

所以,最后,若假设结果1->4的最佳路径是1->2->3->4,我们只需要知道4的前一节点是3,而不关心3的前一节点是谁,而到了3节点,我们才能发现其前一节点还需要经过2。

 

接下来进行代码分析:

初始化,我们让m[i][j]=r[i][j],s[i][j]=0,即将直达情况进行了第一遍记录,后续的比较就是逐次增加中转站点的个数,不断进行比较是经过中转后的代价最优还是直达最优,从而对代价表与中转表进行更新。

 

接下来,分析超过2个节点的情况,我们加入某个点作为两点间的中转点,看加入后代价是否优于之前,若代价优于直达,更新代价表,并将中转节点编号赋值给r[i][j]。

接下来上代码:

代码主要在函数printShortValue()较难理解,其实就是我们要从最小规模入手。

 

#include <iostream>
using namespace std;
const int N = 1024;
int r[N][N],m[N][N],s[N][N];
int n;
int b, t;
void initArray()    //初始化数组
{for(int i = 1; i <= n; i++){for(int j = i+1; j <= n; j++){m[i][j] = r[i][j];r[i][j] = 0;}}
}void calShortValue()    //计算数组中的最优代价情况
{for(int num = 3; num <= n; num++){  //num站点的长度,由小到大更新,则长度大的情况可以使用长度小的情况for(int i = 1; i <= n-num+1; i++){int j = i+num-1;for(int k = i+1; k < j; k++){if(m[i][k] + m[k][j] < m[i][j]){m[i][j] = m[i][k] + m[k][j];s[i][j] = k;}}}}
}void printShortValue()  //打印数组中最优代价情况
{for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){if(j <= i){cout << " ";}else{cout << s[i][j];}cout << " ";}cout << "\n";}
}void printShortPath(int b, int t)
{if(s[b][t]==0){cout << "---" << t;return;}printShortPath(b,s[b][t]);printShortPath(s[b][t],t);
}int main()
{cout << "请输入站点个数:" << endl;cin >> n;cout << "请以此输入各站点间的代价:" << endl;for(int i = 1; i <= n; i++){for(int j = i+1; j <= n; j++){cin >> r[i][j];}}cout << "请输入源站点与目的站点:";cin >> b >> t;initArray();calShortValue();printShortValue();cout << "两点间的最小代价为:" << m[b][t] <<endl;cout << "两点间经过:" << b;printShortPath(b,t);
}

 

转载于:https://www.cnblogs.com/chenleideblog/p/10470326.html

这篇关于游艇租赁最小代价——动态规划求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487840

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL