同步发电机三相短路暂态分析仿真

2023-12-13 05:10

本文主要是介绍同步发电机三相短路暂态分析仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、同步发电机三相短路介绍:

同步发电机是电力系统中最重要和最复杂的元件,它由多个有磁耦合关系的绕组构成,定子绕组同转子绕组之间还有相对运动,同步电机突然短路的暂态过程要比稳态对称运行(包括稳态对称短路)时复杂得多。稳态对称运行时,电枢磁势的大小不随时间变化,而且在空间以同步速度旋转,它同转子没有相对运动,因此不会在转子绕组中感应电流。突然短路时,定子电流在数值上发生急剧变化,电枢反应磁通也随着变化,并在转子绕组中产生感应电流,这种电流又反过来影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程的另一个显著特点。

二、同步发电机三相短路分析原理:

在分析同步发电机突然三相短路暂态过程时,可以利用叠加原理,这样同步发电机机端

突然短路相当于在发电机端口处突然加上了与电机短路前的端电压大小相等但方向相反的三相电压。在定子绕组上突然加以对称的相电压后,为了保持其无源闭合电路的磁链不变,在其定子绕组中将要引起相应的瞬变电流,而且这些瞬变电流还要按照一定的时间常数逐步衰减至稳态值。

当发电机突然短路时,定子各绕组电流将包含基频分量、倍频分量和直流分量。到达稳态后,定子电流起始值中的直流分量和倍频分量将由其起始值衰减到零,而基频分量则由其起始值衰减为相应的稳态值。同样,在转子绕组中也包含直流分量和同频率交流分量。

引人衰减因子以后,定子电流的d轴和q轴分量分别为:

经过变换和整理,可得定子a相电流为: 

转子绕组中的电流:

 在式(1) ~式(3) 中,xd,xq。为定子绕组纵轴、横轴的同步电抗; xf为纵轴绕组之间的电枢反映电抗; xad、 xaq为发电机转子纵轴、横轴的电抗; xD、 xQ 表示D、Q阻尼绕组的电抗,xσn为D阻尼绕组的漏抗; x'd、 x"d分别为纵轴暂态电抗、次暂态电抗; x"q为横轴次暂态电抗; E'q、 E"q分别为横轴暂态电势;次暂态电势; E”d为纵轴次暂态电势; Eq[0]、 V[0]为短路前瞬间的空载电势、机端电压。

三、同步发电机三相短路暂态过程的数值计算与仿真方法:

1.数值计算

在已知发电机参数的情况下,可以利用MATLAB对突然三相短路后的定子电流、转子

电流暂态过程表达式(2)、式(3)进行数值计算分析,这样将有助于更好地理解短路

的物理过程。假设一台有阻尼绕组同步发电机,PN =200MW, UN=13.8kV, fN =50Hz, Xd=1.0,

Xq=0.6,X'd=0.30, X"d=0.21,X"q=0.31, r=0.005,Xσf=0.18, XaD =0.1,xσQ=0.25,

T’d0=5s,TD=2s, T”d0=1.4s。若发电机空载,端电压为额定电压,端子突然发生三相短路,

且α0=0,利用MATLAB对突然三相短路后的定子电流进行数值计算的基本步骤如下:

  1. 首先计算各衰减时间常数。可得Ta=0.16s, T”d =0.72s,T"d=0.34s,T’d=1. 64s。由于空载时,Eq(o)=E"(o=E"=Vo)=1, E",=0, ao=0,则利用式(5-6) 可得a相定子电流表达式为:

  1. 利用MATLAB对式(5-8) 进行数值计算并绘图的程序如下:

N=48;
t1 =(0:0.02 /N:1.00);
fai =0*pi /180;      %a0值
%空载短路全电流表达式
Ia =(-cos(2*pi*50*t1+fai)-1.43*exp(-2.97*t1).*cos(2*pi*50*t1+fai)-...
2.34*exp(-0.608*t1).*cos(2*pi*50*t1+fai)+...
4*exp(-6.3*t1).*cos(-fai*pi/80)+0.77*exp(-6.3*t1) .*cos(2*2*pi*50*t1+fai));
%基频分量
Ia1 =-cos(2*pi*50*t1+fai)-1.43*exp(-2.97*t1).*cos(2*pi*50*t1+fai)-...
2.34*exp(-0.608*t1).*cos(2*pi*50*t1+fai);
%倍频分量
Ia2 =0.77*exp(-6.3*t1).*cos(2*2*pi*50*t1+fai);
%非周期分量
Iap=4*exp(-6.3*t1).*cos(-fai*pi/180);
%绘制空载短路全电流波形图
subplot(4,1,1);
plot(t1,Ia);
grid on;
axis([0 1 -10 10]);
ylabel( 'Ia(p.u.)');
%绘制基频分量波形图
subplot(4,1,2);
plot(t1 ,Ia1);
grid on;
axis([0 1 -10 10]);
ylabel( 'Ial(p.u.)');
subplot(4,1,3);
%绘制倍频分量波形图
plot(t1,Ia2);
grid on;
axis([0 1 -1 1]);
ylabel('Ia2(p.u.)');
%绘制非周期分量波形图
subplot(4,1,4);
plot(t1,Iap);
grid on;
axis([0 1 -10 10]) ;
ylabel( 'Iap(p.u.)');
xlabel('t/s ');

运行以上程序得到发电机端突然发生三相短路时的a相定子电流,以及基频分量、倍频分量和非周期分量的波形如图1所示,并且短路后的冲击电流标幺值为9.1927

图1发电机端突然发生三相短路时的a相定子电流波形图

2.仿真方法

针对以上的发电机参数,建立其Simulink仿真模型如图2所示。

图2发电机端突然发生三相短路的Simulink仿真模型

在上中,同步发电机采用p. u.标准同步电机模块,根据前面的计算,其参数设置如图3所示。

升压变压器T采用“ Three-phase transformer ( Two Windings)” 模型,其参数设置如图4所示。

图4升压变压器模块的参数设定

由于同步发电机模块为电流源输出,因此在其端口并联了一个有功功率为5MW的负荷模块。

仿真开始前,要利用Powergui模块对电机进行初始化设置。单击Powergui模块,打开潮流计算和电机初始化窗口,设置参数如图5所示。图中设定同步发电机为平衡节点“Swing bus"。初始化后,与同步发电机模块输人端口相连的两个常数模块Pm和Vf以及图3中的“ Init.Cond.”将会自动设置。

 从图5中还可以看出,a相电流滞后a相电压4.43°,即电流与电压波形的过零点相差0.25ms。因此在故障模块中设置0. 02025s时发生三相短路故障(对应a0 =0),其他参数采用默认设置。

选择Odel5s算法,仿真的结束时间取为1s。开始仿真,得到发电机端突然三相短路后

的三相定子电流波形图如图6所示。其中,a相定子电流的冲击电流标幺值为9.1048,和理论计算值存在0. 95%的误差。如图7所示为短路后定子电流的d轴和q轴分量id、iq以及励磁电流if的仿真波形图。

 图 5利用Powergui模块的潮流计算和电机初始化窗口计算初始参数

 图6发电机端突然三相短路时的定子电流仿真波形图

图7发电机端突然三相短路时id, iq,以及ifd的电流仿真波形图

  • 仿真结果分析

当发电机突然短路时,定子各绕组电流将包含基频分量、倍频分量和直流分量,到达稳态后,定子电流起始值中的直流分量和倍频分量将由起始值衰减到零,而基频分量则由其起始值衰减为相应的稳态值,同样,在绕组中也包含直流分量和同频率交流分量。

而定子电流的d轴分量id最终衰减为稳态值、q轴分量iq最后衰减为0,励磁电流if也逐渐衰减为稳态值。根据仿真图形可得,图中所表示数据与计算数据基本一致。

这篇关于同步发电机三相短路暂态分析仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_42059684/article/details/131169613
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/487236

相关文章

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序