F28335上实现浮点FFT

2023-12-12 22:10
文章标签 实现 浮点 fft f28335

本文主要是介绍F28335上实现浮点FFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

硬件:

  1. ICETEK-F28335-A开发板 花了1900米买来,硬件和配套的软件(TI提供的例程加上一点icetek实验)都比较粗糙,文档错误不少,整个东东给人的感觉是匆忙的赶工出来的,不过总算有个可以跑的硬件平台,软件基本可以无视icetek的(除了存储器空间分配,不过icetek在这个问题上和我开了一个玩笑,拿到手的资料讲特别提到外部RAM映射到zone7,测试确怎么都不对,所以奇怪了好一阵,试了换到zone6才恍然大悟,icetek这样的错误也能犯,无语了)资料。
  2. SEEDDSP的USB510仿真器,由于SEEDDSP还未有正式版的驱动发布,所以向seeddsp的zag兄讨了一份测试版的驱动,几个月下来倒也没出什么问题。

软件:

开发环境:

  1. CCS3.3.54
  2. 浮点支持库 文件名:  setup_C28XFPU_CSP_v3[1].3.1207.exe  下载地址: http://www.fs2you.com/files/e86a863a-57e2-11dd-9007-0014221b798a/

    大小:5.7M

  3. C2000代码生成器 文件名:  C2000CodeGenerationTools5[1].0.0Beta2.exe

    下载地址:  http://www.fs2you.com/files/c8217dd4-57e2-11dd-ac64-0014221b798a/

    大小:12.4M

  4. 浮点信号处理库 提供了实时浮点fft算法 C28x Floating-Point Unit Library 1.00 Beta1 http://focus.ti.com.cn/cn/lit/sw/sprc624/sprc624.zip

安装好上述软件后,在ccs的component manager里边选择Code Composer Studio->build tools->tms320c28xx->选中Texas Instrument C2000 Code generation tools<5.0.0B2> 保存设置退出,Rebuild project,就不会出现下面的报错了。

WARNING: invalid compiler option --float_support=fpu32 (ignored)

              C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\TI2323, line 24:   error:

               can't find input file 'rts2800_fpu32.lib'

从外部存储器执行的FFT测试代码:fft输入数据和输出数据定位在外部存储器空间zone6, 包括FFT功能的timer0中断服务程序从zone6执行。

以下是代码:

//###########################################################################

//

// FILE:    Example_2833xFFTExecuteFromXINTF.c

//

// TITLE:   Example FFT Program That Executes From XINTF

//

// ASSUMPTIONS:

//

//    This program requires the DSP2833x header files.

//

//    As supplied, this project is configured for "boot to SARAM"

//    operation.  The 2833x Boot Mode table is shown below.

//    For information on configuring the boot mode of an eZdsp,

//    please refer to the documentation included with the eZdsp,

//

//       $Boot_Table:

//

//         GPIO87   GPIO86     GPIO85   GPIO84

//          XA15     XA14       XA13     XA12

//           PU       PU         PU       PU

//        ==========================================

//            1        1          1        1    Jump to Flash

//            1        1          1        0    SCI-A boot

//            1        1          0        1    SPI-A boot

//            1        1          0        0    I2C-A boot

//            1        0          1        1    eCAN-A boot

//            1        0          1        0    McBSP-A boot

//            1        0          0        1    Jump to XINTF x16

//            1        0          0        0    Jump to XINTF x32

//            0        1          1        1    Jump to OTP

//            0        1          1        0    Parallel GPIO I/O boot

//            0        1          0        1    Parallel XINTF boot

//            0        1          0        0    Jump to SARAM        <- "boot to SARAM"

//            0        0          1        1    Branch to check boot mode

//            0        0          1        0    Boot to flash, bypass ADC cal

//            0        0          0        1    Boot to SARAM, bypass ADC cal

//            0        0          0        0    Boot to SCI-A, bypass ADC cal

//                                              Boot_Table_End$

//

// DESCRIPTION:

//

//          This example configures CPU Timer0 and increments

//          a counter each time the timer asserts an interrupt.

//

//          The ISR code is loaded into SARAM.  The XINTF Zone 6 is

//          configured for x16-bit data bus.  A porition of the code including FFT

//          is copied to XINTF for execution there.

//

//       Watch Variables:

//          CpuTimer0.InterruptCount

//          InBuffer

//          OutBuffer

//          MagBuffer

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

#include "DSP2833x_Device.h"         // DSP2833x Headerfile

#include "DSP2833x_Examples.h"      // DSP2833x Examples headerfile

#include "math.h"

#define PI 3.1415926

// This function will be loaded into SARAM and copied to

// XINTF zone 6 for execution

#pragma CODE_SECTION(cpu_timer0_isr,"xintffuncs");

//LED indicating the state of ISR execution

#define LED (*(unsigned short int *)0x180000)

//FFT Parameters

#include "FPU.h"

#define FFT_SIZE   1024        /* 32, 64, 128, 256, etc        */

#define FFT_STAGES   10        /* log2(FFT_SIZE)               */

/* Align the INBUF section to 2*FFT_SIZE in the linker file   */

#pragma DATA_SECTION(InBuffer, "FFTBUF");

float32 InBuffer[FFT_SIZE];

#pragma DATA_SECTION(OutBuffer, "ZONE6DATA");

float32 OutBuffer[FFT_SIZE];

#pragma DATA_SECTION(TwiddleBuffer, "ZONE6DATA");

float32 TwiddleBuffer[FFT_SIZE];

#pragma DATA_SECTION(MagBuffer, "ZONE6DATA");

float32 MagBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft; 

float32 a1=1.0,a2=100.0,a3=10000.0;//amplitudes

float32 f1=5.00,f2=25.00,f3=45.00; //frequencies

// Prototype statements for functions found within this file:

void init_zone6(void);

interrupt void cpu_timer0_isr(void);

void main(void)

{

   unsigned int i;

// Step 1. Initialize System Control:

// PLL, WatchDog, enable Peripheral Clocks

// This example function is found in the DSP2833x_SysCtrl.c file.

   InitSysCtrl();

// Step 2. Initalize GPIO:

// This example function is found in the DSP2833x_Gpio.c file and

// illustrates how to set the GPIO to it's default state.

// InitGpio();  // Skipped for this example

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts

   DINT;

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

// This function is found in the DSP2833x_PieCtrl.c file.

   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:

   IER = 0x0000;

   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

// Service Routines (ISR).

// This will populate the entire table, even if the interrupt

// is not used in this example.  This is useful for debug purposes.

// The shell ISR routines are found in DSP2833x_DefaultIsr.c.

// This function is found in DSP2833x_PieVect.c.

   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to

// ISR functions found within this file.

   EALLOW;  // This is needed to write to EALLOW protected registers

   PieVectTable.TINT0 = &cpu_timer0_isr;

   EDIS;    // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize the Device Peripheral. This function can be

//         found in DSP2833x_CpuTimers.c

   InitCpuTimers();   // For this example, only initialize the Cpu Timers

// Configure CPU-Timer 0, 1, and 2 to interrupt every second:

// 100MHz CPU Freq, 1 second Period (in uSeconds)

   ConfigCpuTimer(&CpuTimer0, 100, 10000);

// To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any

// of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2833x_CpuTimers.h), the

// below settings must also be updated.

   CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0

// Step 5. User specific code, enable interrupts:

// Initalize XINTF Zone 6

   init_zone6();

// Copy non-time critical code to XINTF

// This includes the following ISR functions: cpu_timer0_isr(), cpu_timer1_isr()

// The  XintffuncsLoadStart, XintffuncsLoadEnd, and XintffuncsRunStart

// symbols are created by the linker. Refer to the F28335_ram_xintf.cmd file.

   MemCopy(&XintffuncsLoadStart, &XintffuncsLoadEnd, &XintffuncsRunStart);

   for(i=0;i<FFT_SIZE;i++)

   {

           InBuffer[i] = a1 * sin(2 * PI * f1 * i / FFT_SIZE) + a2 * sin(2 * PI * f2 * i / FFT_SIZE)+a3 * sin(2 * PI * f3 * i / FFT_SIZE);

   }

  fft.InBuf = InBuffer;     /* Input data buffer      */

  fft.OutBuf = OutBuffer;    /* FFT output buffer      */

  fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer  */

  fft.FFTSize = FFT_SIZE;    /* FFT length             */

  fft.FFTStages = FFT_STAGES;    /* FFT Stages             */

  fft.MagBuf = MagBuffer;       /* Magnitude buffer      */   

  RFFT_f32_sincostable(&fft); /* Initialize twiddle buffer */

// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13

// which is connected to CPU-Timer 1, and CPU int 14, which is connected

// to CPU-Timer 2:

   IER |= M_INT1;

// Enable TINT0 in the PIE: Group 1 interrupt 7

   PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

// Enable global Interrupts and higher priority real-time debug events:

   EINT;   // Enable Global interrupt INTM

   ERTM;   // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever (optional):

   for(;;);

}

interrupt void cpu_timer0_isr(void)

{

   unsigned int i;

   CpuTimer0.InterruptCount++;

   for(i = 0; i < FFT_SIZE; i++)

   {

           InBuffer[i] = a1 * sin( 2 * PI * f1 * i / FFT_SIZE) + a2 * sin( 2 * PI * f2 * i / FFT_SIZE)+a3*sin(2*PI*f3*i/FFT_SIZE);

   }

   RFFT_f32(&fft);        /* Calculate output          */

   RFFT_f32s_mag(&fft);      /* Calculate magnitude       */

   LED = CpuTimer0.InterruptCount;

   // Acknowledge this interrupt to receive more interrupts from group 1

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

// Configure the timing paramaters for Zone 7.

// Notes:

//    This function should not be executed from XINTF

//    Adjust the timing based on the data manual and

//    external device requirements.

void init_zone6(void)

{

    // Make sure the XINTF clock is enabled

    SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;

    // Configure the GPIO for XINTF with a 16-bit data bus

    // This function is in DSP2833x_Xintf.c

    InitXintf16Gpio();

    EALLOW;

    // All Zones---------------------------------

    // Timing for all zones based on XTIMCLK = SYSCLKOUT

    XintfRegs.XINTCNF2.bit.XTIMCLK = 0;

    // Buffer up to 3 writes

    XintfRegs.XINTCNF2.bit.WRBUFF = 3;

    // XCLKOUT is enabled

    XintfRegs.XINTCNF2.bit.CLKOFF = 0;

    // XCLKOUT = XTIMCLK

    XintfRegs.XINTCNF2.bit.CLKMODE = 0;

    // Zone 6------------------------------------

    // When using ready, ACTIVE must be 1 or greater

    // Lead must always be 1 or greater

    // Zone write timing

    XintfRegs.XTIMING6.bit.XWRLEAD = 1;

    XintfRegs.XTIMING6.bit.XWRACTIVE = 2;

    XintfRegs.XTIMING6.bit.XWRTRAIL = 1;

    // Zone read timing

    XintfRegs.XTIMING6.bit.XRDLEAD = 1;

    XintfRegs.XTIMING6.bit.XRDACTIVE = 3;

    XintfRegs.XTIMING6.bit.XRDTRAIL = 0;

    // don't double all Zone read/write lead/active/trail timing

    XintfRegs.XTIMING6.bit.X2TIMING = 0;

    // Zone will not sample XREADY signal

    XintfRegs.XTIMING6.bit.USEREADY = 0;

    XintfRegs.XTIMING6.bit.READYMODE = 0;

    // 1,1 = x16 data bus

    // 0,1 = x32 data bus

    // other values are reserved

    XintfRegs.XTIMING6.bit.XSIZE = 3;

    EDIS;

   //Force a pipeline flush to ensure that the write to

   //the last register configured occurs before returning.

   asm(" RPT #7 || NOP");

}

//===========================================================================

// No more.

//===========================================================================

 

 

/*

// TI File $Revision: /main/1 $

// Checkin $Date: August 29, 2007   14:08:00 $

//###########################################################################

//

// FILE:    28335_RAM_xintf_lnk.cmd

//

// TITLE:   Linker Command File For 28335 examples that run out of RAM

//

//          This ONLY includes all SARAM blocks on the 28335 device.

//          This does not include flash or OTP.

//

//          Keep in mind that L0 and L1 are protected by the code

//          security module.

//

//          What this means is in most cases you will want to move to

//          another memory map file which has more memory defined. 

//

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

*/

/* ======================================================

// For Code Composer Studio V2.2 and later

// ---------------------------------------

// In addition to this memory linker command file,

// add the header linker command file directly to the project.

// The header linker command file is required to link the

// peripheral structures to the proper locations within

// the memory map.

//

// The header linker files are found in <base>\DSP2833x_Headers\cmd

//  

// For BIOS applications add:      DSP2833x_Headers_BIOS.cmd

// For nonBIOS applications add:   DSP2833x_Headers_nonBIOS.cmd   

========================================================= */

/* ======================================================

// For Code Composer Studio prior to V2.2

// --------------------------------------

// 1) Use one of the following -l statements to include the

// header linker command file in the project. The header linker

// file is required to link the peripheral structures to the proper

// locations within the memory map                                    */

/* Uncomment this line to include file only for non-BIOS applications */

/* -l DSP2833x_Headers_nonBIOS.cmd */

/* Uncomment this line to include file only for BIOS applications */

/* -l DSP2833x_Headers_BIOS.cmd */

/* 2) In your project add the path to <base>\DSP2833x_headers\cmd to the

   library search path under project->build options, linker tab,

   library search path (-i).

/*========================================================= */

/* Define the memory block start/length for the F28335 

   PAGE 0 will be used to organize program sections

   PAGE 1 will be used to organize data sections

   Notes:

         Memory blocks on F28335 are uniform (ie same

         physical memory) in both PAGE 0 and PAGE 1. 

         That is the same memory region should not be

         defined for both PAGE 0 and PAGE 1.

         Doing so will result in corruption of program

         and/or data.

         L0/L1/L2 and L3 memory blocks are mirrored - that is

         they can be accessed in high memory or low memory.

         For simplicity only one instance is used in this

         linker file.

         Contiguous SARAM memory blocks can be combined

         if required to create a larger memory block.

*/

MEMORY

{

PAGE 0 :

   /* BEGIN is used for the "boot to SARAM" bootloader mode      */

   /* BOOT_RSVD is used by the boot ROM for stack.               */

   /* This section is only reserved to keep the BOOT ROM from    */

   /* corrupting this area during the debug process              */

   BEGIN      : origin = 0x000000, length = 0x000002     /* Boot to M0 will go here                      */

   BOOT_RSVD  : origin = 0x000002, length = 0x00004E     /* Part of M0, BOOT rom will use this for stack */              

   RAMM0      : origin = 0x000050, length = 0x0003B0

   RAML0      : origin = 0x008000, length = 0x001000   

   RAML1      : origin = 0x009000, length = 0x001000   

   RAML2      : origin = 0x00A000, length = 0x001000   

   RAML3      : origin = 0x00B000, length = 0x001000

   ZONE6A     : origin = 0x100000, length = 0x00E000     /* XINTF zone 6 - program space */

   CSM_RSVD   : origin = 0x33FF80, length = 0x000076     /* Part of FLASHA.  Program with all 0x0000 when CSM is in use. */

   CSM_PWL    : origin = 0x33FFF8, length = 0x000008     /* Part of FLASHA.  CSM password locations in FLASHA            */

   ADC_CAL    : origin = 0x380080, length = 0x000009

   RESET      : origin = 0x3FFFC0, length = 0x000002

   IQTABLES   : origin = 0x3FE000, length = 0x000b50

   IQTABLES2  : origin = 0x3FEB50, length = 0x00008c

   FPUTABLES  : origin = 0x3FEBDC, length = 0x0006A0

   BOOTROM    : origin = 0x3FF27C, length = 0x000D44              

PAGE 1 :

   RAMM1      : origin = 0x000400, length = 0x000400     /* on-chip RAM block M1 */

   RAML4      : origin = 0x00C000, length = 0x001000   

   RAML5      : origin = 0x00D000, length = 0x001000   

   RAML6      : origin = 0x00E000, length = 0x001000   

   RAML7      : origin = 0x00F000, length = 0x001000

   ZONE6B     : origin = 0x10E000, length = 0x002000     /* XINTF zone 6 - data space */

}

SECTIONS

{

   /* Setup for "boot to SARAM" mode:

      The codestart section (found in DSP28_CodeStartBranch.asm)

      re-directs execution to the start of user code.  */

   codestart        : > BEGIN,     PAGE = 0

   ramfuncs         : > RAML0,     PAGE = 0 

   .text            : > RAML1,     PAGE = 0

   .cinit           : > RAML0,     PAGE = 0

   .pinit           : > RAML0,     PAGE = 0

   .switch          : > RAML0,     PAGE = 0

   xintffuncs       : LOAD = RAML1,

                      RUN = ZONE6A,

                      LOAD_START(_XintffuncsLoadStart),

                      LOAD_END(_XintffuncsLoadEnd),

                      RUN_START(_XintffuncsRunStart),

                      PAGE = 0

   .stack           : > RAMM1,     PAGE = 1

   .ebss            : > RAML4,     PAGE = 1

   .econst          : > RAML5,     PAGE = 1     

   .esysmem         : > RAMM1,     PAGE = 1

   IQmath           : > RAML1,     PAGE = 0

   IQmathTables     : > IQTABLES,  PAGE = 0, TYPE = NOLOAD

   IQmathTables2    : > IQTABLES2, PAGE = 0, TYPE = NOLOAD

   FPUmathTables    : > FPUTABLES, PAGE = 0, TYPE = NOLOAD

   DMARAML4         : > RAML4,     PAGE = 1

   DMARAML5         : > RAML5,     PAGE = 1

   DMARAML6         : > RAML6,     PAGE = 1

   DMARAML7         : > RAML7,     PAGE = 1

   FFTBUF   ALIGN( 2048 ) : { } >   RAML6  PAGE 1

   //FFTBUF   ALIGN( 2048 ) : { } >   ZONE6B PAGE 1

   ZONE6DATA        : > ZONE6B,    PAGE = 1 

   .reset           : > RESET,     PAGE = 0, TYPE = DSECT /* not used                    */

   csm_rsvd         : > CSM_RSVD   PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   csmpasswds       : > CSM_PWL    PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   /* Allocate ADC_cal function (pre-programmed by factory into TI reserved memory) */

   .adc_cal     : load = ADC_CAL,   PAGE = 0, TYPE = NOLOAD

}

/*

//===========================================================================

// End of file.

//===========================================================================

*/

结果截图如下:

F28335上实现浮点FFT - 酷浪 - 铁军的家


这篇关于F28335上实现浮点FFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486116

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义