MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析

本文主要是介绍MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特卡罗法又叫做统计模拟法、随机抽样技术,是一种随机模拟方法以概率和统计理论方法为基础的一种计算方法,通俗来说是可以使用随机数来解决很多计算问题的一种方法,很直观简单,尤其对于一些求解积分无解的情况,非常好使且简单粗暴。

蒙特卡罗法求面积(定积分)

y = x² 为例,我们需要求出 x 在[0,10]相对应的 y 在[0,100] 所围成的曲线面积,在我们有了微积分的知识之后,我们可以通过对这个函数的原函数做差来求解(1/3*10³-1/3*0³=1000/3),这种叫做解析解,也就是通过数学公式求出来的解。

除了这种求积分的方法,我们接下来介绍的就是蒙特卡罗法。
将大量随机点散落到整个矩形,然后计算散落在围成曲线下的点的数量的占比就可以得出曲线面积了。
曲线围成的面积=整个矩形区间的面积 * 曲线下方的点的个数的占比

需要注意的是,蒙特卡罗法的前提条件是区间的值要么全是正值,要么全是负值,如果不是的情况就分区再求积分。 

是不是有了这方法,不管什么曲线围成的面积,都不在话下,就这么简单粗暴好用哈哈。

%使用非负整数 seed 为随机数生成函数提供种子,以使 rand、randi 和 randn 生成可预测的数字序列。
rng(0);
set(0,'defaultAxesFontName', 'Monospaced');  % 防止中文乱码
set(gcf, 'position', [10, 20, 1000, 700]);
%f = suptitle('求解y=x^2定积分');
%set(f, 'fontsize', 20); 
L = 10;  % 积分区间长度
fs = 1 / 1e3; % 采样率0.001
x = 0 : fs : L;
y = x .^ 2;  
S = L * (L ^ 2);  %矩形面积,这个示例就是1000% 随机点的数量(作对比)
N_Lis = [10, 100, 1000, 10000];% 解析解(原函数做差值)
res_integ = 1/3 * (10^3 - 0^3); % 近似解
%figure(1); clf;
for n = 1 : length(N_Lis)cnt = 0;x_random = L * rand(1, N_Lis(n));  % 随机点xy_random = L ^ 2 * rand(1, N_Lis(n));  % 随机点y% 统计曲线下面的点的数量for i = 1 : N_Lis(n)if y_random(i) <= x_random(i) ^ 2cnt = cnt + 1;endendres_appro = cnt / N_Lis(n) * S;% 画图对比subplot(2, 2, n);plot(x, y, 'k', 'linewidth', 2); hold on;area(x, y, 'facecolor','c'); hold on;scatter(x_random, y_random, 10, 'r', 'filled', 'markerfacealpha', 0.5);xlabel('x'); ylabel('y'); set(gca, 'fontsize', 14);title(['数学解≈', num2str(res_integ, '%.1f'), '   近似解≈', num2str(res_appro, '%.1f')]);
end

可以看到当随机点从10个增加到10000个的时候,结果对比也可以知道,求出来的这个近似解就越接近解析解(真实值),那么我们在生活当中如果遇到需要求面积的情况,而且连曲线的函数都不清楚的情况下,我们应该知道如何求曲线围成的面积了,比如说,可以撒上一层豆子或者是水,水是最好的(连续,不离散),然后称量下曲线围成的豆子或者水的重量在整个矩形中的占比就可以知道围成的面积了。

无解的情况

有时候求积分是无解的情况,比如下面的三个函数所围成的面积,我们就不能通过数学公式得到解析解或者说非常困难,但是可以快速使用蒙特卡罗法来求其近似解: 

T = 20;
fs = 1 / 1e3;
x0 = -T : fs : T;
y1 = sin(x0.^ 2);
y2 = sin(x0) ./ x0;
y3 = exp(-x0.^2);figure(1); clf;
subplot(3, 1, 1);
plot(x0, y1, 'linewidth', 1.5); ylabel('y'); title('y=sin(x^2)'); set(gca, 'fontsize', 12);
subplot(3, 1, 2);
plot(x0, y2, 'linewidth', 1.5); ylabel('y'); title('y=sin(x)/x'); set(gca, 'fontsize', 12);
subplot(3, 1, 3);
plot(x0, y3, 'linewidth', 1.5); xlabel('x'); ylabel('y'); title('y=e^{-x^2}'); set(gca, 'fontsize', 12);% 绘制围成区域
x = 0 : fs : 2;
y11 = sin(x.^ 2);
y21 = sin(x) ./ x;
y31 = exp(-x.^2);figure(2); clf;
plot(x, y11, 'linewidth', 1.5); hold on;
plot(x, y21, 'linewidth', 1.5); hold on;
plot(x, y31, 'linewidth', 1.5); hold on;
area(x(y11>y31 & y21>y11), y11(y11>y31 & y21>y11), 'facecolor', 'c', 'edgealpha', 0); hold on;
area(x(y11>y31 & y21>y11), y31(y11>y31 & y21>y11), 'facecolor', 'w', 'edgealpha', 0); hold on;
h = legend('y=sin(x^2)', 'y=sin(x)/x', 'y=e^{-x^2}', 'location', 'southwest');
xlabel('x'); ylabel('y'); title('求三条曲线围成的面积'); set(gca, 'fontsize', 12); set(h, 'fontsize', 12);% 蒙特卡罗法求面积
L = 2; 
H = 3;
S = L * H;
N_Lis = [1e1, 1e2, 1e3, 1e4];
figure(3); clf;
for n = 1 : length(N_Lis)N = N_Lis(n);x_random = L * rand(1, N);y_random = H * rand(1, N) - 1;cnt = 0;for i = 1 : Nif (y_random(i) <= sin(x_random(i)^2)) && (y_random(i) <= sin(x_random(i))/x_random(i)) ...&& (y_random(i) >= exp(-x_random(i)^2))cnt = cnt + 1;endendres_appro = cnt / N * S;subplot(2, 2, n);plot(x, y11, 'linewidth', 1.5); hold on;plot(x, y21, 'linewidth', 1.5); hold on;plot(x, y31, 'linewidth', 1.5); hold on;area(x(y11>y31 & y21>y11), y11(y11>y31 & y21>y11), 'facecolor', 'c', 'edgealpha', 0); hold on;area(x(y11>y31 & y21>y11), y31(y11>y31 & y21>y11), 'facecolor', 'w', 'edgealpha', 0); hold on;scatter(x_random, y_random, 10, 'r', 'filled', 'markerfacealpha', 0.5);xlabel('x'); ylabel('y'); title(['样本数=', num2str(N_Lis(n)), '   近似解≈', num2str(res_appro, '%.2f')]); set(gca, 'fontsize', 14); 
endh = suptitle('蒙特卡罗法求图形面积');
set(h, 'fontsize', 18);
set(gcf, 'position', [10, 20, 800, 700]);

只需要将随机点(样本数)增加到基本覆盖整个区域,我们就可以得到所围成的图形里面的样本数的占比,这样就近似求出了这个所围成的面积了。

机器人工作区域

在机器人领域,我们也可以使用蒙特卡罗法模拟出末端执行器的运动区域,这样对于我们关注机器人的所能工作的范围有一个更直观的了解。

%定义D-H参数
a2 = 0.420;
a3 = 0.375;
d2 = 0.138 + 0.024;
d3 =-0.127 -0.024;
d4 = 0.114 + 0.021;
d5 = 0.114 + 0.021;
d6 = 0.090 + 0.021;for i = 1:100000
%角度范围是[-pi,pi],rand返回(0,1) 内均匀分布的随机数
%模拟各关节的角度
theta1 = -pi + 2*pi*rand;
theta2 = 0 + 2*pi*rand;
theta3 =-(5/6)*pi + (5/3)*pi*rand;
theta4 = -pi + 2*pi*rand;
theta5 = -pi + 2*pi*rand;
theta6 = -pi + 2*pi*rand;%XYZ就是关节的末端位置值(不考虑方向)
x(i) = a2*cos(theta1)*cos(theta2)+a3*cos(theta1)*cos(theta2+theta3)-d5*cos(theta1)*sin(theta2+theta3+theta4)-sin(theta1)*(d2+d3+d4)-d6*(cos(theta5)*sin(theta1)-cos(theta1)*cos(theta2+theta3+theta4)*sin(theta5));
01:46y(i) = d6*(cos(theta1)*cos(theta5)+cos(theta2+theta3+theta4)*sin(theta1)*sin(theta5))+a3*sin(theta1)*cos(theta2+theta3)-d5*sin(theta1)*sin(theta2+theta3+theta4)+cos(theta1)*(d2+d3+d4)+a2*cos(theta2)*sin(theta1);z(i) =-a3*sin(theta2+theta3)-a2*sin(theta2)-d5*cos(theta2+theta3+theta4)-d6*sin(theta5)*sin(theta2+theta3+theta4);
endplot3(x,y,z,'b.','MarkerSize',0.5)

我们这里让机器人的关节随机运行10万次,也就是10万个随机点,通过plot3函数,画出这个六轴机械臂末端执行器所处空间的能够工作的范围了,基本上可以看到能够覆盖机器人所能够工作的区域了。

也可以观察XY组成的侧面,或者另外两根轴组成的侧面情况

其中中间白色圆心部分,是机械臂末端所不能运动到的地方。

这篇关于MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485773

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte