三篇论文解决了大型语言模型 (LLM) 的三个不同问题

2023-12-12 09:01

本文主要是介绍三篇论文解决了大型语言模型 (LLM) 的三个不同问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讨论三篇论文,它们解决了大型语言模型 (LLM) 的三个不同问题类别:

  1. 减少幻觉。Reducing hallucinations.

  2. 增强小型、开放可用模型的推理能力。Enhancing the reasoning capabilities of small, openly available models.

  3. 加深我们对transformer架构的理解,并有可能简化transformer架构。Deepening our understanding of, and potentially simplifying, the transformer architecture.

Fine-tuning Language Models for Factuality

https://arxiv.org/pdf/2311.08401.pdf 

这篇文章介绍了一种无需人工标注就可以改进语言模型事实正确性的方法。

主要做法是:

  1. 提出了两种自动估计长文本生成质量的方法:参考知识库一致性测量和模型自信水平测量。

  2. 根据这两种质量估计方法从未标注的数据集中采样优先级对,其中优选分数更高的文本作为preferred response。

  3. 使用Direct Preference Optimization算法对语言模型进行调优,使其在未来生成更多事实正确的文本。

  4. 在两个评价事实正确性的数据集上进行实验,结果表明只使用自动采样的优先级对就可以有效改进模型事实正确性,使错误率比RLHF模型或解码时增强事实正确性的基线方法下降超过50%。

  5. 同时探讨了事实排查参考知识和模型自信的优先级对,以及与其他方法如ITI和DOLA的结合效果。

RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback

https://arxiv.org/pdf/2309.00267.pdf

这篇文章主要介绍了使用AI生成反馈(RLAIF)进行强化学习的研究工作,其主要贡献如下:

  1. 该工作证明RLAIF在概括性、有用对话生成和无害对话生成三个文本生成任务上与使用人类反馈(RLHF)取得了相当或更好的表现,这与人类评估员的评价一致。

  2. 它表明,即使AI生成反馈模型的规模与  policy模型一致,RLAIF也可以比仅使用监督学习的基线模型取得更好的效果。这意味着RLAIF可能成为一种自我改进的方法。

  3. 直接使用AI模型直接提供奖励信号,而不需要将AI生成的偏好标签转化为奖励模型,在概括性任务上取得的效果优于前者。

  4. 它对采用不同的提示技巧生成AI标签进行了研究,发现要求AI给出思考过程能够更好地与人类偏好匹配,而采用实例学习效果不一。

  5. 研究了AI生成标签模型规模与标签质量的关系,发现标签质量随模型规模的增大不断提高。

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

https://arxiv.org/pdf/2305.18290.pdf

主要研究直接优化偏好(Direct Preference Optimization,简称DPO),一种不使用强化学习就可以从人类偏好数据直接训练语言模型的简单算法。

文章的主要贡献包括:

  1. 提出了DPO算法,它可以在一个训练步骤内直接优化语言模型来符合人类偏好数据,而无需学习奖励模型或采样模型 policy,大大简化了流程。

  2. 理论分析表明,DPO等价于学习一个以另一个参考模型为基础的奖励函数,但它避免了强化学习中的一些不稳定性问题。

  3. 实验结果表明,在情感处理、总结和单轮对话等任务上,使用规模达到6B参数的语言模型,DPO的效果与强化学习算法如PPO达到或优于PPO,且训练更简单。

  4. DPO算法极其简单直观,只需要一个 classifier 似的二分类损失函数来训练,而无需复杂的强化学习流程,在实践应用中更易实现。

这篇关于三篇论文解决了大型语言模型 (LLM) 的三个不同问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484021

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc