Matplotlib for presenting results(论文画图matplotlib jupyter文档)

2023-12-12 07:58

本文主要是介绍Matplotlib for presenting results(论文画图matplotlib jupyter文档),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考jupyter的官方文档点击打开链接

第一部分讲了matplotlib 自带的各种风格,可以画出不同 背景样式的图

第二部分讲的是绘制heatmap,利用heatmap可以将自己的结果和别的模型进对比(用不同深重颜色代表差异)

第三部分利用TSNE这个库可以把高维数据表示为二维图中(没看懂)

第四部分画堆叠bar图


Learning curves¶

Make matplotlib graphics to show up inline.

In [8]:
%matplotlib inline

Import matplotlib. If you want to generate images without having a window appear (if you run your scripts on servers), use a non-interactive backend such as Agg (for PNGs), PDF, SVG or PS. To do so, uncomment the second line in the following cell.

In [9]:
import matplotlib
#matplotlib.use('Agg')
import matplotlib.pyplot as plt

Matplotlib has different styles. Run the cell to check which styles are available.

In [10]:
plt.style.available
Out[10]:
[u'seaborn-darkgrid',u'Solarize_Light2',u'seaborn-notebook',u'classic',u'seaborn-ticks',u'grayscale',u'bmh',u'seaborn-talk',u'dark_background',u'ggplot',u'fivethirtyeight',u'_classic_test',u'seaborn-colorblind',u'seaborn-deep',u'seaborn-whitegrid',u'seaborn-bright',u'seaborn-poster',u'seaborn-muted',u'seaborn-paper',u'seaborn-white',u'fast',u'seaborn-pastel',u'seaborn-dark',u'seaborn',u'seaborn-dark-palette']

To set a style you want use stlye.use.

In [11]:
matplotlib.style.use('seaborn-darkgrid')

plot_learning_curves plots train, dev, test measure-time curves. Play around with different parameters to get a figure that suits you the best. flist is the list of size 3; the first element is the list of train scores, the second of dev scors and the third of test scores.

In [12]:
def plot_learning_curves(fig_path, n_epochs, flist, style=''):measure = 'f1'steps_measure = 'epochs'plt.figure(dpi=400)plt.rcParams['font.size'] = 10plt.rcParams['axes.labelsize'] = 12plt.rcParams['axes.labelweight'] = 'bold'plt.rcParams['axes.titlesize'] = 12plt.rcParams['xtick.labelsize'] = 10plt.rcParams['ytick.labelsize'] = 10plt.rcParams['legend.fontsize'] = 10plt.rcParams['figure.titlesize'] = 12steps = range(1, n_epochs+1)plt.title('learning curves' + style)plt.plot(steps, flist[0], linewidth=1, color='#6699ff', linestyle='-', marker='o',markeredgecolor='black',markeredgewidth=0.5, label='train')plt.plot(steps, flist[1], linewidth=3, color='#ff4d4d', linestyle='-', marker='D',markeredgecolor='black',markeredgewidth=0.5, label='test')plt.plot(steps, flist[2], linewidth=2, color='#ffcc66', linestyle='-', marker='s',markeredgecolor='black',markeredgewidth=0.5, label='dev')plt.xlabel(steps_measure)plt.xticks(steps)plt.ylabel(measure)plt.legend(loc='best', numpoints=1, fancybox=True)plt.show()plt.savefig(fig_path)

Let's generate a random examples to illustrate one figure with learning curves.

In [16]:
fig_path = 'figs/'
train_f1 = [0.2, 0.3, 0.4, 0.5, 0.6, 0.62, 0.65, 0.67, 0.68, 0.67, 0.69, 0.72, 0.721, 0.719, 0.72]
dev_f1 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.57, 0.59, 0.6, 0.62, 0.61, 0.615, 0.614, 0.6159, 0.62]
test_f1 = [0.05, 0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.43, 0.5, 0.51, 0.55, 0.52, 0.53, 0.525, 0.531]
flist = [train_f1, dev_f1, test_f1]
n_epochs = 15
plot_learning_curves(fig_path + 'learning_curve.png', n_epochs , flist)
<matplotlib.figure.Figure at 0x1074e1e50>

And the same figure with all available styles.

In [17]:
for st in plt.style.available:matplotlib.style.use(st)plot_learning_curves(fig_path + 'learning_curve.png', n_epochs , flist, '--' + st)
<matplotlib.figure.Figure at 0x107517250>
<matplotlib.figure.Figure at 0x10a271f10>
<matplotlib.figure.Figure at 0x10a246790>
<matplotlib.figure.Figure at 0x10a878750>
<matplotlib.figure.Figure at 0x10af8a850>
<matplotlib.figure.Figure at 0x107254ad0>
<matplotlib.figure.Figure at 0x10af91ad0>
<matplotlib.figure.Figure at 0x10a8afc10>
<matplotlib.figure.Figure at 0x10bfd8d10>
<matplotlib.figure.Figure at 0x10a583210>
<matplotlib.figure.Figure at 0x10a9d4cd0>
<matplotlib.figure.Figure at 0x10a749d10>
<matplotlib.figure.Figure at 0x10a6573d0>
<matplotlib.figure.Figure at 0x10a5f3f10>
<matplotlib.figure.Figure at 0x10a1ec310>
<matplotlib.figure.Figure at 0x10a118d90>
<matplotlib.figure.Figure at 0x10af57110>
<matplotlib.figure.Figure at 0x10cf635d0>
<matplotlib.figure.Figure at 0x10a9c7fd0>
<matplotlib.figure.Figure at 0x10a1cc550>
<matplotlib.figure.Figure at 0x10a986590>
<matplotlib.figure.Figure at 0x10a 
<matplotlib.figure.Figure at 0x10a300f10>
<matplotlib.figure.Figure at 0x10a21ee90>
<matplotlib.figure.Figure at 0x10bfd1e90>

In your scripts after every epoch or after every 1K iterations evaluate your model on train, dev and test data and append corresponding scripts.

Heatmaps¶

Visualize LSTM outputs¶

Now import prettyplotlib.

In [18]:
import prettyplotlib as ppl

visu_lstm_outputs illustrates a heatmap of LSTM outputs. More examples can be found here: https://github.com/olgabot/prettyplotlib/wiki/Examples-with-code.

In [19]:
def visu_lstm_outputs(fig_path, LSTM_outputs, sentence_tokenized):plt.rcParams['xtick.labelsize'] = 20plt.rcParams['ytick.labelsize'] = 20slen = len(sentence_tokenized)fig, ax = ppl.subplots(1)fig.set_figheight(15)fig.set_figwidth(20)ppl.pcolormesh(fig, ax, LSTM_outputs)ax.set_xticks(np.arange(0.5, slen + 0.5, 1))ax.set_xticklabels(sentence_tokenized)ax.set_title('lstm outputs', fontsize = 25)plt.show()fig.savefig(fig_path)

Let's see how it works for a randomly generated example.

In [20]:
import numpy as npsentence = 'today is a beautiful day'
sentence_tokenized = sentence.split(' ')
slen = len(sentence_tokenized)
LSTM_hidden_size = 15
LSTM_outputs = np.random.rand(LSTM_hidden_size, slen) fig_path = "figs/heatmap_lstm_hidden.png"
visu_lstm_outputs(fig_path, LSTM_outputs, sentence_tokenized)
/Users/ana/tf_cpu/lib/python2.7/site-packages/matplotlib/__init__.py:800: MatplotlibDeprecationWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.mplDeprecation)

For a tensorflow model you need to retrieve ourputs with outputs_op = graph.get_operation_by_name(op_name).outputs[0], run the operation outputs = session.run(outputs_op) and transpose them np.asarray(outputs).transpose().

Visualize improvements¶

If you compare your models with another model, you can visualize improvements and make your results table easier to interpret.

In [21]:
matplotlib.style.use('seaborn-white')

visu_imporovements makes a heatmap of the improvements data and writes improvements values in the center of cells.

In [22]:
def visu_improvements(improvements_data):y_labels = ['model1', 'model2', 'model3', 'model4']x_labels = ['measure1', 'measure2', 'measure3']fig, ax = plt.subplots(1)fig.set_figheight(15)fig.set_figwidth(30)#plt.pcolormesh(fig, ax, my_data)plt.pcolor(improvements_data, cmap=plt.cm.YlGn)ax.set_aspect('auto')for y in range(improvements_data.shape[0]):for x in range(improvements_data.shape[1]):plt.text(x + 0.5, y + 0.5, '%.2f' % improvements_data[y, x],horizontalalignment='center',verticalalignment='center',size=30,weight='bold')ax.set_yticks(np.arange(0.5, len(y_labels) + 0.5, 1))ax.set_yticklabels(y_labels, size=25, weight='bold')ax.set_xticks(np.arange(0.5, len(x_labels) + 0.5, 1))ax.set_xticklabels(x_labels, size=17, weight='bold')ax.tick_params(axis='both', labelsize=25)ax.set_title('improvements', fontsize = 40)cbar = plt.colorbar()cbar.ax.tick_params(labelsize=30)fig.savefig(fig_path)
Make a random example.
In [23]:
fig_path = "improvements.png"
n_models = 4, 
n_measures = 3
improvements_data = np.random.random_sample((4,3))
np.savetxt(fname='improvements.txt', X=improvements_data, fmt='%10.5f', delimiter='\t')
visu_improvements(improvements_data)

You will write differences of your models and another model in a text file (one row for one model) and read it as a numpy array.

In [24]:
improvements_data = np.loadtxt('improvements.txt', delimiter='\t')
visu_improvements(improvements_data)

tSNE¶

Using tSNE you can visualize your high-dimensional vectors in 2D space. Learn first how to use tSNE effectively https://distill.pub/2016/misread-tsne/.

In [25]:
def plot(candidates_tsne, n_classes, tags, ids, file_path):almost_black = '#262626'fig, ax = plt.subplots(1)# hard-coded for the example with 3 classescolors = ['red', 'blue']for k in range(n_classes):begin = sum(sizes[:k])end = sum(sizes[:k]) + sizes[k]x = [candidates_tsne[i, 0] for i in range(begin, end)]y = [candidates_tsne[i, 1] for i in range(begin, end)]# marks every vector with "id (tag)", where id and tag could be anything you like, e.g. word (POS)# every vector point is colored with the corresponding class colortext = [str(ids[i]) + " (" + str(tags[i]) + ")" for i in range(begin, end)]ax.scatter(x, y, label='class'+str(k+1), alpha=0.5, edgecolor=almost_black, facecolor=colors[k], linewidth=0.15)for i, txt in enumerate(text):ax.annotate(txt, (x[i], y[i]))# remove top and right axesspines_to_remove = ['top', 'right']for spine in spines_to_remove:ax.spines[spine].set_visible(False)ax.xaxis.set_ticks_position('none')ax.yaxis.set_ticks_position('none')spines_to_keep = ['bottom', 'left']for spine in spines_to_keep:ax.spines[spine].set_linewidth(0.5)ax.spines[spine].set_color(almost_black)# make axis almost blackax.xaxis.label.set_color(almost_black)ax.yaxis.label.set_color(almost_black)ax.set_xticks([])ax.set_yticks([])ax.title.set_color(almost_black)ax.set_title('tsne', fontsize = 20)# make the legend background light graylight_grey = np.array([float(248)/float(255)]*3)legend = ax.legend(frameon=True, scatterpoints=1)rect = legend.get_frame()rect.set_facecolor(light_grey)rect.set_linewidth(0.0)# change the legend label colors to almost blacktexts = legend.textsfor t in texts:t.set_color(almost_black)ax.grid(False)plt.show()fig.savefig(str(file_path), dpi=200)plt.close()

Make random classification dataset.

In [26]:
import sklearn
from sklearn import datasetsn_classes = 2
X, y = datasets.make_classification(n_samples=10, n_features=20, class_sep=10)
types = [[] for _ in range(n_classes)]
sizes = [0]*n_classes
for i, l in enumerate(y):types[l].append(X[i])sizes[l] += 1for i in range(n_classes):types[i] = np.asarray(types[i]).reshape((sizes[i], 20))

And plot.

In [27]:
from sklearn.manifold import TSNEjoint = np.concatenate(types, 0)
tsne = TSNE(init='pca', n_iter=5000)
candidates_tsne = tsne.fit_transform(joint)
file_path = "figs/tsne.png"
tags = [1]*sizes[0] + [2]*sizes[1]
ids = range(sum(sizes))
plot(candidates_tsne, n_classes, tags, ids, file_path)

When running on serves comment plt.show for all examples.

Stacked bars plot¶

In [30]:
#from matplotlib.font_manager import FontProperties
from operator import add
In [91]:
def tags_stacked_bars(distr1, distr2):distr1.sort(key=lambda item: item[1], reverse=True)distr1_dict = dict(distr1)distr2.sort(key=lambda item: item[1], reverse=True)distr2_dict = dict(distr2)# plot tags which has positive frequency in the first distribution and higher than one in the secondplot_tags = [tag for tag, freq in distr1 if freq > 0.0]other = []for tag, freq in distr2:if freq > 1.0 and tag not in plot_tags:plot_tags.append(tag)else:other.append(freq)distr1_pruned_dict = {}for key in plot_tags:if key in distr1_dict:distr1_pruned_dict[key] = distr1_dict[key]else:distr1_pruned_dict[key] = 0distr2_pruned_dict = {}for key in plot_tags:if key in distr2_dict:distr2_pruned_dict[key] = distr2_dict[key]else:distr2_pruned_dict[key] = 0distr1_freq = []distr2_freq = []for tag in plot_tags:distr1_freq.append(distr1_pruned_dict[tag])distr2_freq.append(distr2_pruned_dict[tag])plot_tags.append("other")distr1_freq.append(0.0)distr2_freq.append(np.mean(np.asarray(other)))# plot stacked barwidth = 0.4height_cumulative = [0.0, 0.0]plots = []ind = [0, 0.5]fig = plt.figure(figsize=(11, 11))ax = fig.add_subplot(1, 1, 1)colors = ['#0066ff', '#ffcc99', '#adebad', '#ff5c33', '#ac3973', '#ffbf00', '#7979d2', '#00cc99']for k in range(len(plot_tags)):if k < 8:color = colors[k]else:color = np.random.rand(3)if k == 0:plots.append(ax.bar(ind, [distr1_freq[k], distr2_freq[k]], width, color=color, edgecolor='black'))else:plots.append(ax.bar(ind, [distr1_freq[k], distr2_freq[k]], width,bottom=height_cumulative, color=color, edgecolor='black'))height_cumulative = map(add, [distr1_freq[k], distr2_freq[k]], height_cumulative)plt.ylabel('median occurrence of a tag', fontsize=20)title = 'distribution of tags'plt.title(title, fontsize=25)plt.xticks([ind[0]+width/2.0, ind[1]+width/2], ["distr1", "distr2"], fontsize=20)plt.yticks(np.arange(0, sum(distr2_freq), 3))handles = [p[0] for p in plots]plt.legend(handles[::-1], plot_tags[::-1], prop={'size': 10}, loc='center left', bbox_to_anchor=(1, 0.5))fig_path = "figs/stacked_bars.png"plt.show()fig.savefig(fig_path)
In [92]:
distr1 = [["NN", 5.0], ["NP", 3.0], ["PP", 2.0], ["ADV", 2.0], ["S", 2.0], ["ART", 2.0], ["$.", 1.0], ["KON", 1.0], ["ADJA", 1.0], ["APPR", 1.0], ["VVINF", 1.0], ["VVFIN", 1.0], ["$,", 1.0], ["KOUS", 1.0], ["VP", 1.0], ["VAFIN", 1.0], ["PPER", 1.0], ["CVZ", 0.0], ["AVP", 0.0], ["CAP", 0.0], ["CVP", 0.0], ["NE", 0.0], ["CPP", 0.0], ["VMFIN", 0.0], ["PTKNEG", 0.0], ["VAPP", 0.0], ["APPO", 0.0], ["PRF", 0.0], ["VVIZU", 0.0], ["NM", 0.0], ["PDAT", 0.0], ["PIAT", 0.0], ["ADJD", 0.0], ["$[", 0.0], ["PTKVZ", 0.0], ["PRELS", 0.0], ["PIS", 0.0], ["ROOT", 0.0], ["PROAV", 0.0], ["APZR", 0.0], ["PPOSAT", 0.0], ["CO", 0.0], ["CNP", 0.0], ["PDS", 0.0], ["VVPP", 0.0], ["AP", 0.0], ["XY", 0.0], ["PWAV", 0.0], ["CS", 0.0], ["PTKANT", 0.0], ["VZ", 0.0], ["PTKZU", 0.0], ["CARD", 0.0], ["PWS", 0.0], ["VMINF", 0.0], ["MPN", 0.0], ["VAINF", 0.0], ["APPRART", 0.0], ["KOKOM", 0.0], ["PTKA", 0.0], ["PIDAT", 0.0], ["TRUNC", 0.0], ["KOUI", 0.0], ["CAVP", 0.0]]
distr2 = [["NN", 10.0], ["NP", 7.0], ["S", 7.0], ["PP", 5.0], ["ADV", 4.0], ["ADJA", 3.0], ["APPR", 3.0], ["VP", 3.0], ["ART", 3.0], ["VVINF", 2.0], ["VVFIN", 2.0], ["VAFIN", 2.0], ["PPER", 2.0], ["KON", 1.0], ["VMFIN", 1.0], ["ADJD", 1.0], ["PTKNEG", 1.0], ["$.", 1.0], ["$,", 1.0], ["CNP", 1.0], ["KOUS", 1.0], ["PDS", 1.0], ["VVPP", 1.0], ["AP", 1.0], ["CS", 1.0], ["APPRART", 1.0], ["CVZ", 0.0], ["AVP", 0.0], ["CAP", 0.0], ["PWAT", 0.0], ["CVP", 0.0], ["NE", 0.0], ["CPP", 0.0], ["VAPP", 0.0], ["APPO", 0.0], ["PRF", 0.0], ["VVIZU", 0.0], ["NM", 0.0], ["PDAT", 0.0], ["PIAT", 0.0], ["FM", 0.0], ["$[", 0.0], ["PTKVZ", 0.0], ["PRELS", 0.0], ["PIS", 0.0], ["ROOT", 0.0], ["PROAV", 0.0], ["TRUNC", 0.0], ["PPOSAT", 0.0], ["CO", 0.0], ["XY", 0.0], ["PWAV", 0.0], ["PTKANT", 0.0], ["VZ", 0.0], ["PTKZU", 0.0], ["CARD", 0.0], ["PWS", 0.0], ["PRELAT", 0.0], ["VVIMP", 0.0], ["VMINF", 0.0], ["MPN", 0.0], ["VAINF", 0.0], ["KOKOM", 0.0], ["PTKA", 0.0], ["PIDAT", 0.0], ["APZR", 0.0], ["KOUI", 0.0], ["CAVP", 0.0]]tags_stacked_bars(distr1, distr2)


这篇关于Matplotlib for presenting results(论文画图matplotlib jupyter文档)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483834

相关文章

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho

浅谈Redis Key 命名规范文档

《浅谈RedisKey命名规范文档》本文介绍了Redis键名命名规范,包括命名格式、具体规范、数据类型扩展命名、时间敏感型键名、规范总结以及实际应用示例,感兴趣的可以了解一下... 目录1. 命名格式格式模板:示例:2. 具体规范2.1 小写命名2.2 使用冒号分隔层级2.3 标识符命名3. 数据类型扩展命