【智驾深谈】George Hotz 开源代码复现与分析(80G数据云盘下载)

本文主要是介绍【智驾深谈】George Hotz 开源代码复现与分析(80G数据云盘下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


GeoHot智驾系统开源这件事情还是很多人关注的,也问了很多问题,其中包括渐进式路线的车企,直接L4的互联网企业,很多创业团队和风投。先回答一个问到最多的问题:这代码离实际路上能用还差很多。


  • 对于大公司来讲,车企做渐进式ADAS其实都是工况分解而来,流行使用状态机,深度模型是个黑盒子他们肯定不喜欢。


  • 互联网企业愿意尝试新方法,但这个系统其实还需要在车辆控制方面做大量的改进才能够跟现有系统对标。


  • 对于创业团队来讲,这个系统是个很好的参考,可以学习一下深度学习,以及comma.ai是如何短时间内聚焦并发力赢得投资人青睐的。


  • 而对于风投来讲,要谨慎看待,AI创业团队有的很靠谱,而不靠谱的会特别不靠谱,比如直接用人家代码跑别的数据做展示,不冷静的投资人很可能会被忽悠投一笔。


下面的内容就都是程序啊论文啊代码啊,不感兴趣的可以撤退了。


具体怎么复现


先扯两句倒腾数据的情况,一般对于国外这种项目,下载很大的压缩包,普通人用浏览器、迅雷或者云盘等常规办法是很难快速拿到的,主要原因有两个,一个是直连速度太慢,另一个是往往国外网盘都需要代理访问。因此我一般习惯是在国外临时开一个VPS做中继,具体来讲就是AWS或者随便有海外机房的云服务提供商那里按小时买一个16M带宽主机,反正用一天就销毁了,最后不到五十块,成功拖回到赵师傅在学校的服务器上。有三个倒腾数据的命令值得一提:wget的continue断点续传模式,resync的-P断点续传模式,screen –r把进程丢后台。


具体来讲,先来配置环境,赵师傅的服务器是这样的,所以跑的还挺快。


  • Ubuntu 14.04

  • Python 2.7

  • nVidia Geforce Titan X (12GB Memory)


软件的安装顺序建议Anaconda,tensorflow,keras,具体如下:


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


然后在Python中 import tensorflow看看是不是成功了


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

然后赵师傅做了几件事:


  • GeoHot代码:在训练集上train了一个转向控制模型

  • GeoHot代码:在测试集上validate了一下

  • 赵师傅改进:在训练集上train了一个离散分类转向控制模型

  • 赵师傅改进:在测试集上validate了一下


640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

GeoHot原本的转向控制是个回归模型,整个训练大概用了六小时,而回归问题在深度学习中还尚且没有得到彻底解决,因此赵师傅给改了一下变成一个36桶的离散分类问题,softmax没跟loss层整合,分类用的是one-hot。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


上图绿色是驾驶员数据,红色是模型输出数据。从最终的结果来看,两种方式在训练集上都表现不错,但测试集上都不太好。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


主要原因可能是80G数据中有很多低速非典型的数据,会影响训练效果,比如上图中停在路边的例子。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

赵师傅分析了一下九个视频中车速的情况,觉得后续尝试可以专门找车速大于一定阈值的片段,或者把低速模型跟高速模型分开,同时考虑速度和转向的训练。


论文有啥看点


然后哥几个讨论了一下论文,还扯了之前一些相关的工作吧。


首先,Geohot给出了两种在comma.ai数据集上的尝试,第一种是直接从图像回归驾驶员的操作(方向盘转角),第二种是预测(猜测)下一帧时车辆前置摄像头看到的图像。第一个任务一般被称为steering angle prediction,这个任务最早可以追溯到Dean A.Pomerleau在1989年和1992年发表的两篇文章(见下图)。当时还没有使用卷积网,使用的图像输入分辨率也很低,更没有标准的大规模公开数据集。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

2005年Lecun的一项工作试图用卷积网解决这个问题,但是其数据集有以下几点值得改进的地方(以当前的自动驾驶标准看):(1)不公开;(2)不是在公路上拍摄的(off-road)。并且该文章并没有给出严格的定量实验,只是提供了如下的定性结果(蓝色输出,红色真值):


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


综上,总的来说,comma.ai是第一个公开的大规模的有着详细标注的可以用来研究steeringangle prediction的数据集。Geohot的文章给出了一些初步的探索,但并不是其强调的重点。


然后, Geohot的文章主要专注于解决第二个任务,即预测(猜测)下一帧时车辆前置摄像头看到的图像。该系统结合了RNN和GAN。GAN在计算机视觉领域中一般都以反卷网的形式存在,用以生成稠密的输出。Geohot的文章在这个任务上有很强的原创性,但是并没有给出严谨的定量实验,就目前的情况来看,其理论价值大于实用价值。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


最后,关于别人家的工作,除了steering angle prediction(对应下图的behavior reflex)以外,还有两种可能的方式用以学习自动驾驶,一种是把自动驾驶转化为其他的子任务,例如行人和汽车检测、车道线检测、场景语义分割等,在下图中被称为mediated  perception。另一种由princeton vision组提出,在下图中被称为direct perception,可以理解为把自动驾驶拆分为一些语义层级较高的子任务(下下图所示)。此项工作在虚拟的赛车游戏中进行训练,在真实数据集kitti上汇报了有关前车距离的定量实验。


代码核心在哪


最后就是折腾着半夜看了看代码,主要都是李师傅带看。代码中使用了基于tensorflow后台的Keras进行CNN网络的构造。steering回归模型是一个单帧处理的网络,比较简单:


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


使用一个三层卷积网络加两层全链接,输入一幅图像,最后全链接输出要回归的steering角度。如前文所讲到的,这种简单的单帧回归难以对同一场景不同的steering情况进行学习。

 

文章中的generator模型则相对复杂,其中`models/autoencoder.py`定义了GAN网络下的生成网络和判别网络等模块。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=


Encoder网络使用了VAE模型,类似于一个卷积回归网络对图像进行基层卷积操作之后,使用全链接构造回归输出,输出结果为VAE编码的mean结果和扰动sigma方差。


生成网络部分比较简单,用全链接将输入的code转换为2Dmap,然后使用Deconv反卷积逐层上采样放大,最终得到生成图像。

 

Discriminator网络也比较简单,卷积层操作后使用全链接回归输出,输出结果为判别结果,中间的隐层结果也一并输出。

 

损失函数都比较直观,可以和原文中的内容进行对应,提一下`kl_loss`的计算:

对于一个N(mean, sigma^2)的分布和N(0, 1)计算KL散度即可得到该式。该式的计算网上有很多资料,比如可参考:https://home.zhaw.ch/~dueo/bbs/files/vae.pdf

 

另外值得一提的是文中`Dis(Gen(Enc(x))`的计算,`Gen(Enc(x))`对应了代码中的


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

其中`Z2`是一个N(0, 1)分布的采样。因为要强制encoder的输出是N(0, 1),且分布中的所有编码都可产生逼真的图像,因此每次训练中生成一个分布中的样本,也即`E_mean + Z2 * E_logsigma`,约束其解码判别结果`D_dec_fake`与`F_dec_fake`逼真。在上面提到的VAE参考资料中,也可以找到这一采样优化方法的相关介绍。


结语


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

人家车也在路上跑了,数据也采集了,输入输出也同步了,代码也开源了,论文也公开了,GitHub回答问题还那么及时,我们也都给放到百度云了,没什么槽点了吧……


文章转自新智元公众号,原文链接

这篇关于【智驾深谈】George Hotz 开源代码复现与分析(80G数据云盘下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_33909059/article/details/90435915
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/483571

相关文章

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File