【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测

2023-12-12 04:50

本文主要是介绍【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV Python Shi-Tomasi 角点检测器

【目标】

  • Shi-Tomasi 角点检测器
  • cv2.goodFeaturesToTrack

【理论】

上一个章节中学习了Harris角点,J. Shi and C. Tomasi 做了一些修改,Good Features to Track显示了比Harris角点更好的效果。

Harris 角点检测器分数函数如下:

R = λ 1 λ 2 − k ( λ 1 + λ 2 ) 2 R=\lambda_1 \lambda_2 -k(\lambda_1+\lambda_2)^2 R=λ1λ2k(λ1+λ2)2

Shi-Tomasi 用:

R = m i n ( λ 1 , λ 2 ) R=min(\lambda_1,\lambda_2) R=min(λ1,λ2)

如果 R R R大于一个阈值,就认为是角点。

在这里插入图片描述

如上图,绿色部分的取值就被认为是角点。

【代码】

Harris角点和Shi-Tomasi角点效果对比

在这里插入图片描述

在这里插入图片描述

import numpy as np 
import cv2from matplotlib import pyplot as pltimg = cv2.imread("assets/blox.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# #############################################
# harris 角点检测
gray_harris = np.float32(gray)
# dst 为角点相应,并没有直接返回角点位置
dst = cv2.cornerHarris(gray_harris, 2, 3, 0.04)
# 角点响应,消除一些噪声,所以要做膨胀和腐蚀
dst = cv2.dilate(dst, None)
dst = cv2.erode(dst, None)
ret, dst = cv2.threshold(dst, 0.01 * dst.max(), 255, cv2.THRESH_BINARY)
dst = np.uint8(dst)# 取连通区域
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
# print(len(centroids))
# print(centroids)
img_harris = img.copy()
for xy in centroids:x, y = int(xy[0]), int(xy[1])cv2.circle(img_harris, (x, y), 3, (0, 255, 255), -1)
cv2.imshow("img_harris", img_harris)###########################################
# shi-Tomasi 角点检测
# corners = cv2.goodFeaturesToTrack(gray, 25, 0.01, 10)
# 这里为了统一对比,也选择56个角点
corners = cv2.goodFeaturesToTrack(gray, 56, 0.01, 10)
corners = np.int0(corners)
img_goodfeatures = img.copy()
for i in corners:x, y = i.ravel()cv2.circle(img_goodfeatures, (x, y), 3, (0, 0, 255), -1)cv2.imshow("img_goodfeatures", img_goodfeatures)cv2.waitKey(0)
cv2.destroyAllWindows()

【接口】

  • goodFeaturesToTrack
cv.goodFeaturesToTrack(	image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]	) ->	corners
cv.goodFeaturesToTrack(	image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize[, corners[, useHarrisDetector[, k]]]	) ->	corners
cv.goodFeaturesToTrackWithQuality(	image, maxCorners, qualityLevel, minDistance, mask[, corners[, cornersQuality[, blockSize[, gradientSize[, useHarrisDetector[, k]]]]]]	) ->	corners, cornersQuality

寻找图像中强的角点

  • image: 输入的单通道8位或浮点图像
  • corners: 输出的角点列表
  • maxCorners: 返回的最多的角点数量,如果检测数量较多,返回最强的那个数量即可。如果要返回所有的,设置为0即可,测试发现设置负数运行报错
  • qualityLevel: 最小可接受角点等级。该参数会与最好的角点响应值相乘,比如说最好的响应为1500,如果设置为0.01,则小于15的角点都不会接受。
  • minDistance: 返回的角点之间的最小欧式距离。
  • mask: 感兴趣区域
  • cornersQuality: 输出角点的质量
  • blockSize: 计算梯度和特征值的小窗口
  • gradientSize: sobel 梯度窗口直径
  • useHarrisDetector: 是否使用 harris 的检测算子
  • k: Harris角点检测器的参数

【参考】

  1. OpenCV 官方文档
  2. Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on , pages 593–600. IEEE, 1994.

这篇关于【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483297

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.