推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】

2023-12-11 23:04

本文主要是介绍推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HNSW算法概述

HNSW(Hierarchical Navigable Small Word)算法算是目前推荐领域里面常用的ANN(Approximate Nearest Neighbor)算法了。其目的就是在极大量的候选集当中如何快速地找到一个query最近邻的k个元素

要找到一个query的k个最近邻元素,一个朴素的思想就是我去计算这个query和所有的总量N 个候选元素的距离,然后选择其中的前k 个最小元素,这个经典算法的算法复杂度是O(Nlog(k)),显然这个算法复杂度实在是太高了,无法适用于实际的使用场景。

而要解决这个问题,可以有多种实现方法,这里所要说的HNSW算法就是目前比较常用的一种搜索算法,它算是其前作NSW算法的一个升级版本,但是两者的本质都是基于一个朴素的思路,就是通过图连接的方式给所有的N 个候选元素事先地定义好一个图连接关系,从而可以将前述的算法复杂度当中的N 的部分给减小掉,从而优化整体的检索效率

其整体的一个图结果可以用下图进行表达:

解决的问题做高效率相似性查找。推荐系统中,如何找到与用户query最相近的几个item,然后推荐出去【也就是推荐出与用户搜索的类似的/用户感兴趣的商品】

解决方法有:Annoy,KD-Tree, LSH, PQ,NSW, HNSW等。

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)发展:近邻图(Proximity Graph)–> NSW --> Skip List --> HNSW

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)

1. 近邻图(Proximity Graph)

近邻图(Proximity Graph): 最朴素的图算法

思路: 构建一张图, 每一个顶点连接着最近的 N 个顶点。 Target (红点)是待查询的向量。在搜索时, 选择任意一个顶点出发。 首先遍历它的友节点, 找到距离与 Target 最近的某一节点, 将其设置为起始节点, 再从它的友节点出发进行遍历, 反复迭代, 不断逼近, 最后找到与 Target 距离最近的节点时搜索结束。

存在的问题:

  1. 图中的K点无法被查询到。
  2. 如果要查找距离Target (红点)最近的topK个点, 而如果点之间无连线, 将影响查找效率。
  3. D点有这么多友节点吗? 增加了构造复杂度。谁是谁的友节点如何确定?
  4. 如果初始点选择地不好(比如很远),将进行多步查找。

2. NSW算法原理

NSW,即没有分层的可导航小世界的结构(Navigable-Small-World-Graph )。

针对上面的问题,解决办法:

  1. 某些点无法被查询到 -> 规定构图时所有节点必须有友节点。
  2. 相似点不相邻的问题 -> 规定构图时所有距离相近到一定程度的节点必须互为友节点。
  3. 关于某些点有过多友节点 -> 规定限制每个节点的友节点数量。
  4. 初始点选择地很远 -> 增加高速公路机制。

2.1 NSW构图算法

图中插入新节点时,通过随机存在的一个节点出发查找到距离新节点最近的m个节点(规定最多m个友节点,m由用户设置),连接新节点到这最近的m个节点。节点的友节点在新的节点插入的过程中会不断地被更新。

待更新...............

推荐算法:HNSW算法简介-CSDN博客

检索模型-粗排HNSW_hnsw模型-CSDN博客

这篇关于推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482396

相关文章

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python Pillow 库详解文档(最新推荐)

《PythonPillow库详解文档(最新推荐)》Pillow是Python中最流行的图像处理库,它是PythonImagingLibrary(PIL)的现代分支和继承者,本文给大家介绍Pytho... 目录python Pillow 库详解文档简介安装核心模块架构Image 模块 - 核心图像处理基本导入