持续学习动态架构算法LwF(Learning without Forgetting )解读总结与代码注释

本文主要是介绍持续学习动态架构算法LwF(Learning without Forgetting )解读总结与代码注释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.持续学习

  • 持续学习相关文章汇总,包含论文地址、代码地址、具体分析解读地址

1.LwF算法相关链接

  • 论文地址
  • 代码地址

2.基本想法

  • 针对问题:在无法获得原始任务训练数据的情况下,适合使视觉系统适应新任务,并且保证其在旧任务上的性能
  • 问题建模:学习对新任务具有判别能力的参数,同时保留训练数据上原始任务的输出
  • 将网络分为所有任务共享部分和特定任务独享部分,网络架构如下:
    图片

3.损失函数

  • 待学习参数有三种:共享部分参数、旧任务们的独享参数、新任务独享参数
  • 由三部分组成:旧任务损失、新任务损失、正则化项
  • 旧任务损失:增长后的网络的输出与增长前的输出尽可能相同,采用知识蒸馏损失,类似交叉熵损失,只不过加大了较小概率的惩罚权重(其中关键参数T,要大于1来加大小概率的权重,文中通过网格搜索将其定位2)
  • 新任务损失:对于新任务的预测与真实值尽可能相同,使用交叉熵损失或者NLL损失
  • 正则化项:限制网络中所有参数,权重0.0005
  • 新旧任务权衡:在新任务损失前面有一个系数来表示对新旧任务性能的权衡,文中取1,参数越大,在新任务上的性能越好,在旧任务上的性能越差。通过改变该参数可以获得新旧任务性能曲线。

4.训练流程

  • 热身阶段(warm-up step):冻结共享部分参数、旧任务们的独享参数,单独训练新任务独享参数
  • 联合优化阶段(joint-optimize step):优化所有参数

5.特点

  • 与传统联合调优方法相比:无需存储旧任务的数据,新任务只需要通过一次共享层便可以用来进行旧任务和新任务的更新,却具有了联合调优的优点。但因为不同任务的分布会不相同,所以文中的方法效果会不如传统联合调优,传统联合调优的效果可以视为本文方法的上限。
  • 效率分析
    • 最慢:共享参数的正反向传播
    • 最快:特征提取层,因为只需要训练新任务的参数
    • 与传统微调相比:多了一步旧任务的独享参数更新,效率稍微低一点
    • 与传统联合调优相比:新旧任务共享的参数只需要进行一次前后向传播,效率更高

6.具体细节

  • 使用动量0.9的随机梯度下降
  • 在全连接层使用了dropout
  • 用旧任务的信息对新任务进行归一化
  • 数据增强:
    • 5X5的网格上对调整过大小的图像进行随机的固定尺寸裁剪
    • 随机镜像裁剪
    • RGB值上添加方差
  • 使用Xavier初始化新任务独享参数
  • 学习率是原网络学习率的0.1-0.02倍
  • 由于任务独享的特征提取部分参数量少,所以使用5倍学习率
  • 对于学习速度相似的方法,使用相同的训练epoch来进行公平比较
  • 有时为了防止过拟合、提升学习速度,会接近平稳在的时候将学习率变为0.1倍
  • 为了公平比较,将热身阶段后的共享网络作为联合训练和微调训练的起始点

7.实验

  • 添加单个新任务
  • 添加多个新任务
  • 数据集大小的影响
  • 网络设计的影响
  • 不同损失
  • 扩展网络结构的效用
  • 小学习率微调来保证旧任务的影响
  • 改变任务专属部分的网络层数

8.结论

  • 对于增长节点式的任务专属网络,其性能与原本的LwF性能相近,但是计算开销却大很多
  • 仅仅降低共享网络的学习率对保留旧任务性能的帮助并不大,但却会很大程度影响新任务
  • 用网络输出的变化来现在旧任务的变化要优于用网络参数的变化来衡量,因为网络参数一点小小的改变就可能引起输出巨大的改变
  • 知识蒸馏损失略优于L1、L2、交叉熵损失,但优势很小
  • 训练速度优于联合优化,对新任务的性能优于微调
  • 本文针对旧任务的损失对旧任务性能上的表现更可解释

9.未来工作

  • 应用到图像分类、跟踪等更多领域:分割、检测、视觉外的任务
  • 探索根据任务分布针对性地保留一些过去的任务数据和输出(由于是面对重尾分布)

10.代码解读

  • 参考文章
  • 含有备注的model.py
import torch
torch.backends.cudnn.benchmark=True
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from PIL import Image
from tqdm import tqdm
import time
import copyimport torchvision.models as models
import torchvision.transforms as transformsdef MultiClassCrossEntropy(logits, labels, T):# Ld = -1/N * sum(N) sum(C) softmax(label) * log(softmax(logit))labels = Variable(labels.data, requires_grad=False).cuda()outputs = torch.log_softmax(logits/T, dim=1)   # compute the log of softmax valueslabels = torch.softmax(labels/T, dim=1)# print('outputs: ', outputs)# print('labels: ', labels.shape)outputs = torch.sum(outputs * labels, dim=1, keepdim=False)outputs = -torch.mean(outputs, dim=0, keepdim=False)# print('OUT: ', outputs)return Variable(outputs.data, requires_grad=True).cuda()def kaiming_normal_init(m):if isinstance(m, nn.Conv2d):#判断m是不是nn.Conv2d的类型或子类nn.init.kaiming_normal_(m.weight, nonlinearity='relu')#一种初始化方法,要指明激活函数,保证输出有一定方差https://zhuanlan.zhihu.com/p/536483424elif isinstance(m, nn.Linear):nn.init.kaiming_normal_(m.weight, nonlinearity='sigmoid')class Model(nn.Module):'''分为超参数、网络架构、类增加三个部分前向传播里没有softmax'''def __init__(self, classes, classes_map, args):# Hyper Parametersself.init_lr = args.init_lrself.num_epochs = args.num_epochsself.batch_size = args.batch_sizeself.lower_rate_epoch = [int(0.7 * self.num_epochs), int(0.9 * self.num_epochs)] #hardcoded decay scheduleself.lr_dec_factor = 10self.pretrained = Falseself.momentum = 0.9self.weight_decay = 0.0001# Constant to provide numerical stability while normalizingself.epsilon = 1e-16# Network architecturesuper(Model, self).__init__()self.model = models.resnet34(pretrained=self.pretrained)self.model.apply(kaiming_normal_init)"""独享层:一层全连接层,与classes数量有关,且没有偏置"""num_features = self.model.fc.in_featuresself.model.fc = nn.Linear(num_features, classes, bias=False)self.fc = self.model.fc'''共享层:resnet34除去最后一层'''#nn.Sequential按序列构建模型https://blog.csdn.net/hxxjxw/article/details/106231242#.children()返回模型的最外层,与.model()的区别类似于attend和extendself.feature_extractor = nn.Sequential(*list(self.model.children())[:-1])#*用于迭代地取出list中的内容#用nn.DataParallel包装模型,可以在多GPU上运行https://zhuanlan.zhihu.com/p/647169457self.feature_extractor = nn.DataParallel(self.feature_extractor) # n_classes is incremented(递增) before processing new data in an iteration# n_known is set to n_classes after all data for an iteration has been processed数据处理完后n_known设为n_classesself.n_classes = 0self.n_known = 0self.classes_map = classes_mapdef forward(self, x):x = self.feature_extractor(x)x = x.view(x.size(0), -1)x = self.fc(x)return xdef increment_classes(self, new_classes):"""Add n classes in the final fc layer"""n = len(new_classes)print('new classes: ', n)in_features = self.fc.in_featuresout_features = self.fc.out_featuresweight = self.fc.weight.data#保存旧任务的网络权重if self.n_known == 0:new_out_features = nelse:new_out_features = out_features + nprint('new out features: ', new_out_features)self.model.fc = nn.Linear(in_features, new_out_features, bias=False)self.fc = self.model.fckaiming_normal_init(self.fc.weight)#所有任务网络统一初始化self.fc.weight.data[:out_features] = weight#还原旧任务网络权重self.n_classes += ndef classify(self, images):"""Classify images by softmaxArgs:x: input image batchReturns:preds: Tensor of size (batch_size,)"""_, preds = torch.max(torch.softmax(self.forward(images), dim=1), dim=1, keepdim=False)return predsdef update(self, dataset, class_map, args):self.compute_means = True# Save a copy to compute distillation outputs保存旧网络来计算旧任务原始输出prev_model = copy.deepcopy(self)prev_model.cuda()classes = list(set(dataset.train_labels))#print("Classes: ", classes)print('Known: ', self.n_known)if self.n_classes == 1 and self.n_known == 0:#self.n_classes初始值是1不是0吗?!new_classes = [classes[i] for i in range(1,len(classes))]else:new_classes = [cl for cl in classes if class_map[cl] >= self.n_known]#有新任务就动态调整网络if len(new_classes) > 0:self.increment_classes(new_classes)self.cuda()loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size,shuffle=True, num_workers=12)print("Batch Size (for n_classes classes) : ", len(dataset))optimizer = optim.SGD(self.parameters(), lr=self.init_lr, momentum = self.momentum, weight_decay=self.weight_decay)with tqdm(total=self.num_epochs) as pbar:for epoch in range(self.num_epochs):# Modify learning rate# if (epoch+1) in lower_rate_epoch:# 	self.lr = self.lr * 1.0/lr_dec_factor# 	for param_group in optimizer.param_groups:# 		param_group['lr'] = self.lrfor i, (indices, images, labels) in enumerate(loader):seen_labels = []images = Variable(torch.FloatTensor(images)).cuda()seen_labels = torch.LongTensor([class_map[label] for label in labels.numpy()])labels = Variable(seen_labels).cuda()# indices = indices.cuda()optimizer.zero_grad()logits = self.forward(images)cls_loss = nn.CrossEntropyLoss()(logits, labels)if self.n_classes//len(new_classes) > 1:dist_target = prev_model.forward(images)logits_dist = logits[:,:-(self.n_classes-self.n_known)]dist_loss = MultiClassCrossEntropy(logits_dist, dist_target, 2)loss = dist_loss+cls_losselse:loss = cls_lossloss.backward()optimizer.step()if (i+1) % 1 == 0:tqdm.write('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' %(epoch+1, self.num_epochs, i+1, np.ceil(len(dataset)/self.batch_size), loss.data))pbar.update(1)

这篇关于持续学习动态架构算法LwF(Learning without Forgetting )解读总结与代码注释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481975

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案