操作系统实验二:用PV操作实现司机售票员进程同步

本文主要是介绍操作系统实验二:用PV操作实现司机售票员进程同步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验二:进程间的同步


一、 实验目的:

  1. 理解进程同步和互斥模型及其应用;

二、 实验内容:

  1. 利用通信API实现进程之间的同步;

  2. 建立司机和售票员进程,并实现他们的同步;

三、实验要求

  1. 显示司机和售票员进程的同步运行轨迹;

四、实验设计与实现:

  • 设计思路:问题的关键在于 进程的同步 。在如何实现进程同步上,我选择了信号量的方法来实现。因为司机和售票员是两个进程,且有很多相似的部分,所以直接采用了 父子进程 来模拟这两个司机和售票员进程。用信号量的 PV操作 来实现对输出信息的加锁,最终实现同步运行,而同步运行的标准就是按照“售票——启动车辆——正常行车——到站停车——开车门——乘客上下车——关车门——售票”的顺序循环输出。为了使程序更加简洁易读,将部分函数代码封装在了semaphore.c中,通过semaphore.h文件引入到sync.c文件中。

  • 实验环境:Linux系统,Ubuntu 64位 20.04.2.0;

  • 实验代码:

    • semaphore.h.c

      #include<stdio.h>
      #include<stdlib.h>
      #include<unistd.h>
      #include<sys/types.h>
      #include<sys/stat.h>
      #include<fcntl.h>
      #include<sys/ipc.h>
      #include<sys/sem.h>/* 该变量用于存放生成Key值的文件路径 */
      #define SEM_FILE "./semfile"/** 这是一个联合体;* val:用于存放初始化信号量的值;* buf:存放struct semid_ds结构体变量的地址;*/
      union semun{int val;struct semid_ds *buf;unsigned short *array;struct seminfo *__buf;
      };/* *该函数用来输出错误信息;*/
      void print_err(char *estr){perror(estr);exit(-1);
      }/** 该函数用于创建或者获取信号量集合;* 参数:信号量个数;* 返回值:信号量集合的标识符;*/
      int creat_or_get_sem(int nsems){int semid;int fd = -1;key_t key = -1;/* 创建一个文件,并打开以确保文件路径可用; */fd = open(SEM_FILE, O_RDWR|O_CREAT, 0664);if(fd == -1) print_err("open ./semfile fail");/* ftok()函数用文件的路径名和一个ASCLL码生成一个唯一的key值; */key = ftok(SEM_FILE, 'a');if(key == -1) print_err("ftok fail");/* 生成信号量集合(包含nsems个信号量)并接收信号量集合标识符; */semid = semget(key, nsems, 0664|IPC_CREAT);if(semid == -1) print_err("semget fail");return semid;
      }/** 该函数用于设置信号量集合中信号量的值;*/
      void init_sem(int semid, int semnum, int val){int ret = -1;union semun sem_un; // 联合体变量sem_un;sem_un.val = val; // 信号量的初始值;/* * semid:信号量集合标识符;* semnum:信号量编号;* SETVAL:设置信号量初始值cmd,确定第四个参数应该为int型;* sem_un:信号量的初始值;*/ret = semctl(semid, semnum, SETVAL, sem_un);if(ret == -1) print_err("semctl fail");
      }/** 该函数用来删除信号量集合和删除用于生成Key值的路径文件;*/
      void del_sem(int semid, int nsems){int ret = -1;ret = semctl(semid, 0, IPC_RMID); if(ret == -1) print_err("semctl del sem fail");remove(SEM_FILE);
      }/* * 该函数实现P操作;*/
      void p_sem(int semid, int semnum_buf[], int nsops){int i = 0;int ret = -1;/** 该结构体在semop头文件中已经被定义;* struct sembuf{*    unsigned short sem_num;   信号量编号;*    short sem_op;   设置为-1表示P操作,设置为1表示V操作;*    short sem_flg;    设置为SEM_UND0可以防止死锁;* }*/struct sembuf sops[nsops];for(i = 0; i < nsops; i++){sops[i].sem_num = semnum_buf[i]; // 信号量编号;sops[i].sem_op = -1; // P操作;sops[i].sem_flg = SEM_UNDO; // 防止死锁;}ret = semop(semid, sops, nsops);if(ret == -1) print_err("semop p fail");
      }/* * 该函数实现V操作;*/
      void v_sem(int semid, int semnum_buf[], int nsops){int i = 0;int ret = -1;struct sembuf sops[nsops];for(i = 0; i < nsops; i++){sops[i].sem_num = semnum_buf[i]; // 信号量编号;sops[i].sem_op = 1; // V操作;sops[i].sem_flg = SEM_UNDO; // 防止死锁;}ret = semop(semid, sops, nsops);if(ret == -1) print_err("semop p fail");
      }
      
    • semaphore.h.h:

      #ifndef H_SEM_H
      #define H_SEM_Hextern void print_err(char *estr);
      extern int creat_or_get_sem(int nsems);
      extern void init_sem(int semid, int semnum, int val);
      extern void del_sem(int semid, int nsems);
      extern void p_sem(int semid, int semnum_buf[], int nsops);
      extern void v_sem(int semid, int semnum_buf[], int nsops);#endif
      
    • sync.c:

      /** 该程序通过信号量实现司机进程和售票员进程的同步;* 输出:司机和售票员进程的同步运行轨迹,其中红色为司机进程输出,蓝色为售票员进程输出;*/
      #include<stdlib.h>
      #include<unistd.h>
      #include<sys/types.h>
      #include<sys/stat.h>
      #include<fcntl.h>
      #include<signal.h>
      #include<sys/ipc.h>
      #include<sys/sem.h>
      #include<stdio.h>
      #include "semaphore.h"/* 信号量个数; */
      #define NSEMS 2/* 信号量集合的标识符; */
      int semid;/** 该函数会调用del_sem函数删除信号量集合和创建Key的路径文件;*/
      void signal_fun(int signo){del_sem(semid, NSEMS);exit(-1);
      }int main(void){int ret = -1;int fd = -1;int i = 0;/*  */int semnum_buf[1] = {0};/* 创建信号量集合,接收信号量集合标识符; */semid = creat_or_get_sem(NSEMS);/* 初始化信号量集合中的每个信号量(每个都设置为0);*/for(i = 0; i < NSEMS; i++){init_sem(semid, i, 0);}ret = fork();if(ret > 0){ /* * 该段代码是父进程(司机进程)执行的;*/while(1){semnum_buf[0] = 0;p_sem(semid, semnum_buf, 1);printf("\033[32;1m 启动车辆;\n");sleep(1);printf("\033[32;1m 正常行车;\n");sleep(1);printf("\033[32;1m 到站停车;\n");sleep(1);semnum_buf[0] = 1;v_sem(semid, semnum_buf, 1);}}else if(ret == 0){ /* * 该段代码是子进程(售票员进程)执行的;*/signal(SIGINT, signal_fun);while(1){printf("\033[35;1m 关车门;\n");sleep(1);semnum_buf[0] = 0;v_sem(semid, semnum_buf, 1);printf("\033[35;1m 售票;\n");sleep(1);semnum_buf[0] = 1;p_sem(semid, semnum_buf, 1);printf("\033[35;1m 开车门;\n");sleep(1);printf("\033[35;1m 乘客上下车;\n");sleep(1);}}return 0;
      }
      

五、实验结果分析:

  • 在Linux终端中输入:

    gcc semaphore.h.c sync.c
    ./a.out
    
  • 终端输出结果:
    在这里插入图片描述

  • 可以观察到,绿色输出为司机进程输出,紫色输出为售票员进程输出,实现了司机和售票员进程的同步输出

参考视频:
https://www.bilibili.com/video/BV1fE411v7Bb?p=24
https://edu.51cto.com/course/13462.html

这篇关于操作系统实验二:用PV操作实现司机售票员进程同步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481339

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1