生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】

本文主要是介绍生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要集中于图片到三维重建的算法模型,其中包含人体重建,人脸重建等

1.三维人体重建

1.1.2015_SMPL: A Skinned Multi-Person Linear Model

论文地址:SMPL2015.pdf (mpg.de)

代码地址:CalciferZh/SMPL: NumPy, TensorFlow and PyTorch implementation of human body SMPL model and infant body SMIL model. (github.com)

gulvarol/smplpytorch: SMPL body model layer for PyTorch (github.com)

autocyz/smpl_understand: understand about SMPLmodel(http://smpl.is.tue.mpg.de/downloads) (github.com)

2019_SMPL-X: Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

论文地址:SMPL-X (mpg.de)

论文代码:vchoutas/smplx: SMPL-X (github.com)

论文摘要

 为了便于分析人类行为、互动和情绪,论文从单个单眼图像中计算出人体姿势、手部姿势和面部表情的 3D 模型。为了实现这一目标,论文使用数千次 3D 扫描来训练一种新的、统一的人体 3D 模型 SMPL-X,该模型通过完全关节的手和富有表现力的面部扩展 SMPL。在没有配对图像和 3D 地面实况的情况下,学习直接从图像回归 SMPL-X 的参数具有挑战性。因此,论文遵循 SMPLify 的方法,该方法估计 2D 特征,然后优化模型参数以拟合特征。在几个重要方面改进了 SMPLify:

  • 检测与面部、手和脚相对应的 2D 特征,并将完整的 SMPL-X 模型拟合到这些特征上;
  • 先使用大型MoCap数据集训练一种新的神经网络姿势;
  • 定义了一种既快速又准确的新的相互渗透惩罚;
  • 自动检测性别和适当的身体模型(男性、女性或中性);
  • 在 PyTorch 实现比 Chumpy 加速了 8 倍以上。

使用新方法SMPLify-X将SMPL-X拟合到受控图像和野外图像中。在一个新的精选数据集上评估 3D 准确性,该数据集包含 100 张具有伪地面实况的图像。这是从单目RGB数据中自动进行富有表现力的人体捕获的一步。这些模型、代码和数据可在 https://smpl-x.is.tue.mpg.de 上用于研究目的。

2020_Deep reconstruction of 3D human poses from video

论文地址:JIAN_TAI.pdf (uwa.edu.au)

代码地址:暂无

[ CVPR 2020].PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization

论文地址:arxiv.org/pdf/2004.00452.pdf

代码地址:facebookresearch/pifuhd: High-Resolution 3D Human Digitization from A Single Image. (github.com)

Demo:PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (shunsukesaito.github.io)

 

2022_JIFF: Jointly-aligned Implicit Face Function for High Quality Single View Clothed Human Reconstruction

论文地址:2204.10549.pdf (arxiv.org)

论文代码:暂未开源

2023.11.27_HAVE-FUN: Human Avatar Reconstruction from Few-Shot Unconstrained Images

论文地址:2311.15672.pdf (arxiv.org)

代码地址:暂未开源

Demo:HAVE-FUN (seanchenxy.github.io)

[ CVPR 2023].Complete 3D Human Reconstruction from a Single Incomplete Image

论文地址:Complete 3D Human Reconstruction From a Single Incomplete Image (thecvf.com)

代码地址:

2.三维人脸重建

2.1.3DMM:A Morphable Model For The Synthesis Of 3D Faces

论文地址:SIG99.dvi (ucsd.edu)

代码地址:ascust/3DMM-Fitting-Pytorch: A 3DMM fitting framework using Pytorch. (github.com)(非官方版)

 2.2.2022_Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion

论文地址:2212.06135.pdf (arxiv.org)

论文代码:cbritopacheco/rodin: Modern C++17 finite element method and shape optimization framework. (github.com)

论文Demo:RODIN Diffusion (microsoft.com)Rodin Diffusion: A Generative Model for Sculpting 3D Digital Avatars - Microsoft Research

 该 3D 化身扩散模型经过训练,可生成表示为神经辐射场的 3D 数字头像。以最先进的生成技术(扩散模型)为基础进行3D建模。使用三平面表示来分解化身的神经辐射场,可以通过扩散模型显式建模,并通过体积渲染渲染到图像中。所提出的3D感知卷积带来了急需的计算效率,同时保持了3D扩散建模的完整性。整个生成是一个分层过程,具有用于多尺度建模的级联扩散模型。一旦生成模型被训练,就可以根据从输入图像、文本提示或随机噪声派生的潜在代码来控制头像的生成。

2.3.2023.11.26_GAIA: ZERO-SHOT TALKING AVATAR GENERATION

论文题目:2023.11.26GAIA: ZERO-SHOT TALKING AVATAR GENERATION

论文地址:2311.15230.pdf (arxiv.org)

论文代码:20231205暂未发布

论文摘要

 零样本说话头像生成旨在从语音和单个肖像图像中合成自然的说话视频。以前的方法依赖于特定领域的启发式方法,例如基于变形的运动表示和 3D 可变形模型,这限制了生成的化身的自然性和多样性。在这项工作中,引入了 GAIA(Generative AI for Avatar),它消除了说话头像生成中的领域先验。鉴于语音仅驱动化身的运动,而化身的外观和背景在整个视频中通常保持不变,将方法分为两个阶段:1)将每一帧解开为运动和外观表示;2)生成以语音和参考人像图像为条件的运动序列。我们收集了一个大规模的高质量会说话的头像数据集,并在其上用不同的尺度(最多 2B 参数)训练模型。实验结果验证了GAIA的优越性、可扩展性和灵活性,1)所得模型在自然性、多样性、口型同步质量和视觉质量方面优于以前的基线模型;2)该框架是可扩展的,因为更大的模型会产生更好的结果;3)它是通用的,可以支持不同的应用,如可控的说话头像生成和文本指示的头像生成。

参考文献

【1】3D human reconstruction人体重建论文小合集 - 知乎 (zhihu.com)

【2】【精选】2022 CVPR 三维人体重建相关论文汇总(3D Human Reconstruction)_3d人体重建_BTWBB的博客-CSDN博客 【3】【技术综述】基于3DMM的三维人脸重建技术总结 - 知乎 (zhihu.com)

【4】 imbinwang/awesome-nerf-3d-reconstruction (github.com)

【5】PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (shunsukesaito.github.io) 

这篇关于生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477387

相关文章

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W