Data Mining数据挖掘—5. Association Analysis关联分析

2023-12-10 11:01

本文主要是介绍Data Mining数据挖掘—5. Association Analysis关联分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6. Association Analysis

Given a set of records each of which contains some number of items from a given collection.
Produce dependency rules that will predict the occurrence of an item based on occurrences of other items.
Application area: Marketing and Sales Promotion, Content-based recommendation, Customer loyalty programs

Initially used for Market Basket Analysis to find how items purchased by customers are related. Later extended to more complex data structures: sequential patterns and subgraph patterns

6.1 Simple Approach: Pearson’s correlation coefficient

Pearson's correlation coefficient in Association Analysis

correlation not equals to causality

6.2 Definitoin

6.2.1 Frequent Itemset

Frequent Itemset

6.2.2 Association Rule

Association Rule

6.2.3 Evaluation Metrics

Evaluation Metrics

6.3 Associate Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold
minsup and minconf are provided by the user
Brute-force approach
Step1: List all possible association rules
Step2: Compute the support and confidence for each rule
Step3: Remove rules that fail the minsup and minconf thresholds

But Computationally prohibitive due to large number of candidates!

Brute-force Approach

Mining Association Rules

6.4 Apriori Algorithm

Two-step approach
Step1: Frequent Itemset Generation (Generate all itemsets whose support ≥ minsup)
Step2: Rule Generation (Generate high confidence rules from each frequent itemset; where each rule is a binary partitioning of a frequent itemset)

However, frequent itemset generation is still computationally expensive… Given d items, there are 2^d candidate itemsets!

Anti-Monotonicity of Support
Anti-Monotonicity of Support

Steps

  1. Start at k=1
  2. Generate frequent itemsets of length k=1
  3. Repeat until no new frequent itemsets are identified
    1. Generate length (k+1) candidate itemsets from length k frequent itemsets; increase k
    2. Prune candidate itemsets that cannot be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
    3. Count the support of each remaining candidate by scanning the DB
    4. Eliminate candidates that are infrequent, leaving only those that are frequent

Illustrating the Apriori Principle

From Frequent Itemsets to Rules
From Frequent Itemsets to Rules

Challenge: Combinatorial Explosion1
Challenge: Combinatorial Explosion2

Rule Generation

Rule Generation for Apriori Algorithm

Complexity of Apriori Algorithm
Complexity of Apriori Algorithm

6.5 FP-growth Algorithm

usually faster than Apriori, requires at most two passes over the database
Use a compressed representation of the database using an FP-tree
Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
FP-Tree Construction

FP-Tree Construction

FP-Growth(Summary)

6.6 Interestingness Measures

Interestingness measures can be used to prune or rank the derived rules
In the original formulation of association rules, support & confidence are the only interest measures used
various other measures have been proposed

Drawback of Confidence
Drawback of Confidence1

Drawback of Confidence2

6.6.1 Correlation

Correlation takes into account all data at once.
In our scenario: corr(tea,coffee) = -0.25
i.e., the correlation is negative
Interpretation: people who drink tea are less likely to drink coffee

6.6.2 Lift

Lift1

Lift2

Example: Lift

lift and correlation are symmetric [lift(tea → coffee) = lift(coffee → tea)]
confidence is asymmetric

6.6.3 Others

6.7 Handling Continuous and Categorical Attributes

6.7.1 Handling Categorical Attributes

Transform categorical attribute into asymmetric binary variables. Introduce a new “item” for each distinct attribute-value pair -> one-hot-encoding
Potential Issues
(1) Many attribute values
Many of the attribute values may have very low support
Potential solution: Aggregate the low-support attribute values -> bin for “other”
(2) Highly skewed attribute values
Example: 95% of the visitors have Buy = No
Most of the items will be associated with (Buy=No) item
Potential solution: drop the highly frequent items

6.7.2 Handling Continuous Attributes

Transform continuous attribute into binary variables using discretization:
Equal-width binning & Equal-frequency binning
Issue: Size of the intervals affects support & confidence - Too small intervals: not enough support but Too large intervals: not enough confidence

6.8 Effect of Support Distribution

Many real data sets have a skewed support distribution
How to set the appropriate minsup threshold?
If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
If minsup is set too low, it is computationally expensive and the number of itemsets is very large
Using a single minimum support threshold may not be effective
Multiple Minimum Support
Multiple Minimum Support

6.9 Association Rules with Temporal Components

Association Rules with Temporal Components

6.10 Subgroup Discovery

Association Rule Mining: Find all patterns in the data
Classification: Identify the best patterns that can predict a target variable
Find all patterns that can explain a target variable.
从数据集中发现具有特定属性和特征的子群或子集。这个任务的目标是识别数据中与感兴趣的属性或行为相关的子群,以便更深入地理解数据、做出预测或采取相关行动。在某些情况下,子群发现可以用于生成新的特征,然后将这些特征用于分类任务。
子群发现旨在发现数据中的子群,而分类旨在将数据分为已知的类别。子群发现通常更加探索性,而分类通常更加预测性。
we have strong predictor variables. But we are also interested in the weaker ones

Algorithms
Early algorithms: Learn unpruned decision tree; Extract rule; Compute measures for rules, rate and rank
Newer algorithms: Based on association rule mining; Based on evolutionary algorithms

Rating Rules
Goals: rules should be covering many examples & Accurate
Rules of both high coverage and accuracy are interesting

Subgroup Discovery – Rating Rules

Subgroup Discovery – Metrics
Subgroup Discovery – Metrics

WRacc1

WRacc2

WRacc3

Subgroup Discovery – Summary

6.11 Summary

Association AnalysisApriori & FP-GrowthSubgroup Discovery
discovering patterns in data; patterns are described by rulesFinds rules with minimum support (i.e., number of transactions) and minimum confidence (i.e., strength of the implication)Learn rules for a particular target variable; Create a comprehensive model of a class

这篇关于Data Mining数据挖掘—5. Association Analysis关联分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476920

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

mybatis中resultMap的association及collectio的使用详解

《mybatis中resultMap的association及collectio的使用详解》MyBatis的resultMap定义数据库结果到Java对象的映射规则,包含id、type等属性,子元素需... 目录1.reusltmap的说明2.association的使用3.collection的使用4.总

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类