【Python学习笔记】25:scipy中值滤波

2023-12-09 15:19

本文主要是介绍【Python学习笔记】25:scipy中值滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中值滤波技术能有效抑制噪声,通过把数字图像中一点的值用该点周围的各点值的中位数来代替,让这些值接近,以消除原图像中的噪声。

模拟中值滤波

>>> import random
>>> import numpy as np
>>> import scipy.signal as signal
>>> x=np.arange(0,100,10)
>>> random.shuffle(x)
>>> x
array([70, 80, 30, 20, 10, 90,  0, 60, 40, 50])
>>> signal.medfilt(x,3) #一维中值滤波
array([ 70.,  70.,  30.,  20.,  20.,  10.,  60.,  40.,  50.,  40.])

signal的medfilt()方法传入两个参数,第一个参数是要作中值滤波的信号,第二个参数是邻域的大小(奇数)。如邻域为3即是每个点自己和左右各一个点成为一个邻域。在每个位置的邻域中选取中位数替换这个位置的数,也就是该函数的返回值数组。如果邻域中出现没有元素的位置,那么以0补齐。

>>> x=np.random.randint(1,1000,(4,4))
>>> x
array([[ 31,  33, 745, 483],[331, 469, 804, 479],[235, 487, 244, 982],[857, 114, 167, 174]])
>>> signal.medfilt(x,(3,3)) #二维中值滤波
array([[   0.,   33.,  469.,    0.],[  33.,  331.,  483.,  479.],[ 235.,  331.,  469.,  174.],[   0.,  167.,  167.,    0.]])

二维中值滤波还可以用signal.medfilt2d(),速度较快,但只支持int8,float32和float64。

对图像中值滤波

测试图像如下,是在网上找的一个200*200像素的头像。
这里写图片描述

import numpy as np
from PIL import Image
import scipy.signal as signalim=Image.open('test.jpg') #读入图片并建立Image对象im
data=[] #存储图像中所有像素值的list(二维)
width,height=im.size #将图片尺寸记录下来#读取图像像素的值
for h in range(height): #对每个行号hrow=[] #记录每一行像素for w in range(width): #对每行的每个像素列位置wvalue=im.getpixel((h,w)) #用getpixel读取这一点像素值row.append(value)#把它加到这一行的list中去data.append(row) #把记录好的每一行加到data的子list中去,就建立了模拟的二维listdata=signal.medfilt(data,kernel_size=3) #二维中值滤波
data=np.int32(data) #转换为int类型,以使用快速二维滤波#创建并保存结果
for h in range(height): #对每一行for w in range(width): #对该行的每一个列号im.putpixel((h,w),tuple(data[h][w])) #将data中该位置的值存进图像,要求参数为tupleim.save('result.jpg')#存储

董老师课程中写的代码在我的电脑(可能是版本的问题)上运行会报错,我修改了之后的如上,这样可以进行中值滤波了,但是图像的颜色不知道为什么也发生了改变(不清楚是否是正常的)。得到下图。
这里写图片描述
如果把int32()改成int8()的话,图像又会被反相(似乎int8()不能把每一位转回表示0~255的三元组)。
如果想滤波得更"严重"一些,只要修改signal.medfilt的参数kernel_size更大一些就可以了,如把它改成5的时候图像如下。
这里写图片描述
这个时候竟然恢复了黑色,这样我认为之前出现绿色的情况也是合理的,可能是该图像本身就有许多绿色的成分在里面(在黑和白之间不易分辨)吧。

这篇关于【Python学习笔记】25:scipy中值滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474167

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e