pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm

本文主要是介绍pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 torch.rand:构造均匀分布张量

torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.rand(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素服从0-1均匀分布的4行3列随机张量
random_tensor = torch.rand(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[0.4349, 0.8567, 0.7321],[0.4057, 0.0222, 0.3444],[0.9679, 0.0980, 0.8152],[0.1998, 0.7888, 0.5478]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

2 torch.randn:构造标准正态分布张量

torch.randn()是用于生成正态随机分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randn(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
random_tensor = torch.randn(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[ 0.7776,  0.6305,  0.1961],[ 0.1831, -0.4187,  0.1245],[ 0.3092, -1.0463, -0.6656],[-1.0098,  1.3861, -0.2600]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

3 torch.randn_like:构造与输入形状相同正态分布张量

torch.randn_like()用于生成一个与输入张量大小相同的张量,其中填充了均值为 0 方差为 1 的正态分布的随机值,其调用方法如下所示:

torch.randn_like(input_tensor, dtype=None, layout=None, device=None, requires_grad=False) ➡️ Tensor

参数:

  • input_tensor(必需)- 其大小将用于生成输出张量的输入张量。

  • dtype(可选)- 输出张量所需的数据类型。默认为None,这意味着将使用输入张量的数据类型。

  • layout(可选)- 输出张量所需的内存布局。默认为None,这意味着将使用输入张量的内存布局。

  • device(可选)- 输出张量所需的设备。默认为None,这意味着将使用输入张量的设备。

  • requires_grad(可选)- 输出张量是否应该在反向传播期间计算其梯度。默认为False。

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
tensor_x = torch.randn(4, 3)
tensor_y = torch.randn_like(tensor_x)print('tensor_x:', tensor_x)
print('type:', tensor_x.type())
print('shape:', tensor_x.shape)print('tensor_y:', tensor_y)
print('type:', tensor_y.type())
print('shape:', tensor_y.shape)

运行代码显示:

tensor_x: tensor([[ 5.5292e-01,  6.5111e-01, -6.0329e-04],[ 1.0402e+00, -7.4630e-01,  7.5701e-01],[ 8.8160e-02, -1.2581e+00, -1.8089e-01],[-4.2769e-01, -8.5043e-01, -5.8388e-01]])
type: torch.FloatTensor
shape: torch.Size([4, 3])
tensor_y: tensor([[ 0.2308,  0.3297, -0.6633],[ 1.7389,  0.6372, -1.1069],[-0.2415, -0.8585,  0.3343],[-1.2581, -0.5001,  0.0317]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

4 torch.randint:构造区间分布张量

torch.randint()是用于生成任意区间分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randint(low=0, high, sizes, out=None) ➡️ Tensor

参数:

  • low~high:随机数的区间范围

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为[1-10]均匀分布的4行3列随机张量
tensor_int = torch.randint(1, 10, (4, 3))
print('tensor_int:', tensor_int)
print('type:', tensor_int.type())
print('shape:', tensor_int.shape)

运行代码显示:

tensor_int: tensor([[1, 7, 1],[3, 8, 7],[5, 2, 1],[5, 3, 6]])
type: torch.LongTensor
shape: torch.Size([4, 3])

5 torch.randperm:根据生成的随机序号对张量进行随机排序

torch.randint()是用于对张量序号进行随机排序的函数,根据生成的随机序列进行随机排序,其调用格式如下所示:

torch.randperm(n, out=None, dtype=torch.int64) ➡️ LongTensor

参数:

  • n:一个整数,可以理解为张量某个方向的维度

  • dtype:返回的数据类型(torch.int64

示例代码:

import torch# 生成一个0~3的随机整数排序
idx = torch.randperm(4)# 生成一个4行3列的张量
tensor_4 = torch.Tensor(4, 3)# 为了方便对比,首先输出tensor_4的结果
print("原始张量\n", tensor_4)# 下面输出随机生成的行序号
print("\n生成的随机序号\n", idx)# 下面的指令实现了在行的方向上,对tensor_4进行随机排序,并输出结果
print("\n随机排序后的张量\n", tensor_4[idx])

运行代码显示:

原始张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])生成的随机序号tensor([3, 0, 2, 1])随机排序后的张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])

这篇关于pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/473011

相关文章

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

MySQL连接池(Pool)常用方法详解

《MySQL连接池(Pool)常用方法详解》本文详细介绍了MySQL连接池的常用方法,包括创建连接池、核心方法连接对象的方法、连接池管理方法以及事务处理,同时,还提供了最佳实践和性能提示,帮助开发者构... 目录mysql 连接池 (Pool) 常用方法详解1. 创建连接池2. 核心方法2.1 pool.q

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符