【数据分析实战】酒店行业华住集团门店分布与评分多维度分析

本文主要是介绍【数据分析实战】酒店行业华住集团门店分布与评分多维度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1. 写在前面
      • 2. 数据集展示
      • 3. 多维度分析
        • 3.1 门店档次多元化:集团投资战略观察
          • 3.1.1 代码实现
          • 3.1.2 本人浅薄理解
        • 3.2 门店分布:各省市分布概览
          • 3.2.1 代码实现
          • 3.2.2 本人浅薄理解
        • 3.3 门店分级评分:服务水平的多维度观察
          • 3.3.1 代码实现
          • 3.3.2 本人浅薄理解
        • 3.4 各档次平均房间数分析
          • 3.4.1 代码实现
          • 3.4.2 本人浅薄理解

1. 写在前面

近年来,随着旅游业的迅猛发展和疫情后经济的复苏,酒店行业备受关注。
华住集团作为中国领先的酒店集团之一,通过分析它的门店分布和各方面的评分数据,能够更深入地了解这个行业的运作和表现。

为了更全面地洞察酒店行业的运营状况,我采集了华住网站上的公开数据,并结合Python中的pyecharts和pandas等工具进行了详尽的分析。通过这些分析,我们希望看到华住集团在门店分布、服务品质等方面的独特之处,以及如何适应旅游业和经济波动的挑战。

2. 数据集展示

数据主要来源于华住会和其他公开可获取的数据源。通过爬取网站上的公开信息,获取了关于门店分布、服务评分、房间数等8026条数据,这些数据是进行深入分析的基础。

hotelNamecityhotelCityAreahotelCommentCounthotelCommentScorehotellevelNamectrip_room_numctrip_openning_hourscategoryScorescore
2626全季上海新国际博览中心龙阳路酒店上海浦东新区38744.9舒适型532019[{‘scoreName’: ‘环境’, ‘itemScore’: ‘4.6’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘卫生’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘服务’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘设施’, ‘itemScore’: ‘4.6’, ‘scoreDescription’: ‘’}]4.7
4288全季固安北京大兴国际机场酒店廊坊084914.9舒适型1002020[{‘scoreName’: ‘环境’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘卫生’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘服务’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘设施’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}]4.9
3502全季淮安淮海北路曼度广场酒店淮安淮阴区60904.8舒适型712023[{‘scoreName’: ‘环境’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘卫生’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘服务’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘设施’, ‘itemScore’: ‘4.9’, ‘scoreDescription’: ‘’}]4.9
7696全季威海火车站酒店威海环翠区258244.8舒适型1342016[{‘scoreName’: ‘环境’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘卫生’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘服务’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘设施’, ‘itemScore’: ‘4.7’, ‘scoreDescription’: ‘’}]4.7
2953汉庭天津陈塘庄地铁站酒店天津河西区46315经济型702021[{‘scoreName’: ‘环境’, ‘itemScore’: ‘4.8’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘卫生’, ‘itemScore’: ‘4.8’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘服务’, ‘itemScore’: ‘4.8’, ‘scoreDescription’: ‘’}, {‘scoreName’: ‘设施’, ‘itemScore’: ‘4.8’, ‘scoreDescription’: ‘’}]4.8

3. 多维度分析

3.1 门店档次多元化:集团投资战略观察

通过统计华住集团的酒店门店级别占比,了解该集团酒店主要分布在哪些档次价位。

3.1.1 代码实现
def draw_pie(data:dict, title:str):c = (Pie(init_opts=opts.InitOpts(theme=ThemeType.ESSOS, height="700px")).add("", [list(z) for z in zip(data.keys(), data.values())],center=['45%',"50%"],).set_global_opts(title_opts=opts.TitleOpts(title=title, pos_left=True), legend_opts=opts.LegendOpts(is_show=False)).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")))return c
draw_pie(
{'经济型': 3659, '舒适型': 3363, '高档型': 592, '超值平价': 233, '豪华型': 118, '其他': 40, '奢华型': 10},
"【2023-12】华住集团各房型占比图"
)

在这里插入图片描述

3.1.2 本人浅薄理解
  1. 主攻平民市场: 占比最多的是那种价格亲民的和舒适的酒店,华住可能希望提供既实惠又舒适的住宿选择,因为这是大多数人所钟爱的。

  2. 对高级市场保持谨慎: 高级和奢华酒店的数量相对较少,可以看出他们对高档市场的投入比较保守。应该是因为高级市场更需要资本,而且竞争也更激烈。

  3. 瞄准追求实惠和舒适的人: 大量的经济型和舒适型酒店可能反映了市场上对于价格实惠和住得舒服的需求。毕竟大家现在更注重物有所值和住宿的基本需求。

3.2 门店分布:各省市分布概览

将数据预处理后通过pandas、pyecharts来看一下华住集团在各个省市的门店分布。

3.2.1 代码实现
from pyecharts.globals import ThemeType
from pyecharts.charts import Map,Geo
map=Map(init_opts=opts.InitOpts(theme=ThemeType.ESSOS, height="800px"))
map.add("",city_data,"china") # city_data=[('江苏省', 1046),('上海市', 795),('浙江省', 730)...]
map.set_global_opts(title_opts=opts.TitleOpts(title="【2023-12】华住集团各省级市酒店分布",subtitle="",pos_right="center",pos_top="5%"),visualmap_opts=opts.VisualMapOpts(max_=1100),) 
map.render_notebook()

在这里插入图片描述

3.2.2 本人浅薄理解

旅游热点地区的门店分布: 华住集团在旅游热点地区的门店较多(例如江苏、上海、浙江、山东等)。这可能是因为这些地区有较强的旅游需求,包括商务旅行和休闲度假。

经济发达地区的门店密度: 华住集团在经济较为发达的地区,如江苏、上海、北京,门店密度相对较高。这可能是因为这些地区有更多的商务差旅和高消费人群,对酒店服务的需求相对较大。

西部地区的发展机遇: 西部地区的门店相对较少,但随着西部地区经济的不断发展,未来可能存在更多的市场机遇。华住集团在这些地区的进一步扩张可能是一个长期的战略目标。

特殊地区的战略定位: 一些地理相对偏远的特殊地区,如乌鲁木齐、呼和浩特、西藏,门店数量较少,可能是因为这些地区的市场规模相对较小,但在战略定位上仍然有一定的考虑。

总体来看,酒店行业受到了旅游、疫情、产业以及地区经济状况等多方面因素的影响。在未来,随着各地旅游业的逐渐复苏、经济的发展,以及公司自身战略的调整,门店分布也可能会发生变化。

3.3 门店分级评分:服务水平的多维度观察

深入研究各等级门店的多维度评分数据。从经济型到奢华型,每个等级的门店都在环境、卫生、服务和设施等方面接受了客户的评价。

3.3.1 代码实现
from pyecharts.charts import Bar
hotel_score = {
'经济型': {'environments': 4.67, 'health': 4.69, 'server': 4.7, 'facility': 4.65},'舒适型': {'environments': 4.74,'health': 4.76,'server': 4.75,'facility': 4.73},'高档型': {'environments': 4.77,'health': 4.78,'server': 4.78,'facility': 4.75},'超值平价': {'environments': 4.41,'health': 4.45,'server': 4.49,'facility': 4.38},'豪华型': {'environments': 4.73,'health': 4.72,'server': 4.71,'facility': 4.68},'其他': {'environments': 4.36, 'health': 4.32, 'server': 4.36, 'facility': 4.3},'奢华型': {'environments': 4.8, 'health': 4.75, 'server': 4.75, 'facility': 4.76}
}
bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE)).add_xaxis(list(hotel_score.keys())).add_yaxis("环境", [_['environments'] for _ in hotel_score.values()]).add_yaxis("卫生", [_['health'] for _ in hotel_score.values()]).add_yaxis("服务", [_['server'] for _ in hotel_score.values()]).add_yaxis("设施", [_['facility'] for _ in hotel_score.values()]).set_global_opts(title_opts=opts.TitleOpts(title="【2023-12】华住各等级酒店平均评分",subtitle="分类对比"))
)
bar.render_notebook()

在这里插入图片描述

3.3.2 本人浅薄理解

等级评分差异: 不同等级的门店在各项评分上存在一定的差异。一般而言,高档型和奢华型门店在各方面的评分相对较高,而经济型和超值平价门店的评分相对较低。反映了不同等级门店在硬件设施、服务水平等方面的差异。

各项评分趋势: 从各等级门店的各项评分来看,‘environments’(环境),‘health’(卫生),‘server’(服务),‘facility’(设施)等方面都被考虑进评分中。其中,环境和卫生方面的评分相对较高,可能是消费者更为重视的因素。

经济型和超值平价门店的特点: 经济型和超值平价门店相对于其他等级门店,在各项评分上都稍显低一些。这可能是因为这些类型的门店通常追求成本控制,提供更为实惠的住宿选择,但在一些豪华体验方面可能相对有所欠缺。

高档型和奢华型门店的优势: 高档型和奢华型门店在各项评分上表现较好,可能提供了更高水平的服务、设施和豪华体验,因此在客户评价中得分较高。

3.4 各档次平均房间数分析
3.4.1 代码实现
hotel_rooms = {'经济型': 93.82, '舒适型': 113.04, '高档型': 146.05, '超值平价': 62.73, '豪华型': 168.47, '其他': 83.87, '奢华型': 125.5}bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE)).add_xaxis(list(hotel_rooms.keys())).add_yaxis("客房数", [_ for _ in hotel_rooms.values()]).set_global_opts(title_opts=opts.TitleOpts(title="【2023-12】华住集团各等级酒店平均客房数",subtitle="分类对比"))
)
bar.render_notebook()

在这里插入图片描述

3.4.2 本人浅薄理解

豪华型酒店房间数最多: 豪华型酒店的平均客房数最高,达到了168.47间。反映了豪华型酒店注重提供宽敞、奢华的住宿环境,以满足高端客户对空间和品质的追求。

高档型酒店次之: 高档型酒店的平均客房数在各个等级中居于第二位,达到了146.05间。可以看出高档型酒店在提供豪华体验的同时,也注重了一定规模的房间供应。

经济型和超值平价酒店相对较少的房间数: 经济型和超值平价酒店的平均客房数相对较低,分别为93.82和62.73间。这反映了这两个档次的酒店更注重高周转和实惠经营,而非大规模提供房间。

华住集团的门店分布和服务评分,以及各类酒店占比显示了丰富的特色。考虑到旅游、疫情和经济等因素的影响,酒店行业一直在不断变化和调整。通过深入研究这些数据,我们更好地了解了消费者的需求,可以优化运营策略,并不断提升服务水平。
分析仅供学习使用,不构成任何投资建议。

创作不易,如果你觉得有帮助,请点个赞支持一下。你的鼓励是我创作的最大动力,期待未来能为大家带来更多有趣的分析文章。感谢大家的阅读和支持!

我们计划定期进行数据采集分析,以便更好地对比门店数据,分析市场的变化。
下一次,我们要深入研究在假日和工作日时各种类型酒店的入住率。深入了解酒店业的复苏情况。通过比较不同类型酒店在节假日和平时的入住情况,看看能否发现什么有趣的趋势。

这篇关于【数据分析实战】酒店行业华住集团门店分布与评分多维度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472601

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima