SOM网络2: 代码的实现

2023-12-09 04:59
文章标签 代码 实现 网络 som

本文主要是介绍SOM网络2: 代码的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SOM自组织映射神经网络的原理,详见博客:SOM网络1:原理讲解

训练的主函数

train_SO代码如下:

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_fun=None,                               #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_fun is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化

PCA 初始化权重

def weights_PCA(X,Y,data):N,D=np.shape(data)weights=np.zeros([X,Y,D])pc_value,pc=np.linalg.eig(np.cov(np.transpose(data)))   # pc_vale为特征值,pc 为特征向量 DXD维pc_order=np.argsort(-pc_value)  # 特征值从大到小排序,并返回Index# 对W:[X,Y,D]进行初始化for i,c1 in enumerate(np.linspace(-1,1,X)):for j,c2 in enumerate(np.linsapce(-1,1,Y)):weights[i,j]=c1*pc[pc_order[0]]+c2*pc[pc_order[1]]   #利用最大的2个特征值对应的特征向量加权组合成i,j位置的D维表征向量	

完整的训练代码

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_func=weights_PCA,                        #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_func is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化for n_epoch in range(N_epoch):print("Epoch %d" %(n_epoch+1))#打乱样本次序index=rng.permulation(np.arange(N))for n_step,_id in enumerate(index):# 取一个样本x=datas[_id]#计算learning rate (eta)t=N*n_epoch + n_stepeta=get_learning_rate(init_lr,t,N_steps)#计算样本距离输出的每个节点的距离,并获取激活点的位置winner=get_winner_index(x,weights,dis_func)#根据激活点的位置计算临近点的权重   随着迭代的进行sigma也需要不断减少new_sigma=get_learning_rate(sigma,t,N_steps)  # sigma 更新的方式和学习率一样g=neighborhood_fun(X,Y,winner,new_sigma) g=g*eta#进行权重的更新weights =  weights + np.expand_dims(g,-1)*(x-weights)    # 打印量化误差print("quantization_error=%.4f" %(get_quantization_error(data,weights))) return weights#计算学习率
def get_learning_rate(lr,t,max_steps):  # t当前的steps   max_steps=N x epoch  (N样本数)		return lr/(1+t/(max_steps/2))	# 获取激活(获胜点)节点的位置,与x距离最小的输出节点位置
def get_winner_index(x,w,dis_func=euclidean_distance):# 计算输入样本和各个节点的距离dis = dis_func(x,w)#找到距离最小的位置index=np.where(dis ==np.min(dis))return (index[0][0],index[1][0])#利用高斯距离法计算临近点的权重
# X,Y模板大小,c中心点的位置  def gaussion_neighborhood(X,Y,c,sigma)xx,yy=np.meshgrid(np.arange(X),np.arange(Y))d=2*sigma*sigmaax=np.exp(-np.power(xx-xx.T[c],2)/d)ay=np.exp(-np.power(yy-yy.T[c],2)/d)return (ax*ay).T# 计算欧式距离
def euclidean_distance(x,w):dis=np.expand_dims(x,axis=(0,1))-w   # x:D w:[X,Y,D]  因此需要增加两维 x:D->x:[1,1,D]return np.linalg.norm(dis,axis=-1)                   # 输出[X,Y] 二范数 即为欧拉距离# 特征标准化 (x-mu)/std
def feature_normalization(data):mu=np.mean(data,axis=0,keepdims=True)sigma=np.std(data,axis=0,keepdims=True)return (data-mu)/sigmadef get_U_Matrix(weights):X,Y,D=np.shape(weights)um=na.nan * np.zeros((X,Y,8))  #8 领域ii=[0 ,-1,-1,-1,0,1,1, 1]jj=[-1,-1, 0, 1,1,1,0,-1]for x in range(X):for y in range(Y):w_2=weights[x,y]for k,(i,j) in enumerate(zip(ii,jj)):if(x+i >=0 and x+i<X and y+j>=0 and y+j <Y):w_1=weights[x+i,y+j]um[x,y,k]=np.linalg.norm(w_1-w_2)um=np.nansum(um,axis=2)return um/um.max()#计算量化误差   计算每个样本点和映射点之间的平均距离
def get_quantization_error(data,weights):w_x,w_y=zip(*[get_winner_index(d,weights) for d in datas])error=datas-weights[w_x,w_y]             # 数据域聚类中心的距离error=np.linalg.norm(error,axis=-1)  return np.mean(error)

训练完成后,返回输出节点的weights,维度为 [ X , Y , D ] [X,Y,D] [X,Y,D], 相当于固化了模型的权重weights, weights表征了当前的训练样本。

测试

if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()

测试数据
在这里插入图片描述
U_Matrix
在这里插入图片描述

  • 颜色越深说明与邻近点的关系越强烈,颜色越强说明与邻近点的关系越不强烈。

测试分类的效果

```python
if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()# 查看分类的效果markers=['o','s','D']colors =['C0','C1','C2']for i in range(N):x =datas[i]w=get_winner_index(x,weights)i_lab=labs[i]-1plt.plot(w[0]+.5,w[1]+.5,markers[i_lab],markerfacecolor='None'markeredgecolor=colors[i_lab],markersize=12,markeredgewidth=2)plt.show()	  

在这里插入图片描述

这篇关于SOM网络2: 代码的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472552

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too