SOM网络2: 代码的实现

2023-12-09 04:59
文章标签 代码 实现 网络 som

本文主要是介绍SOM网络2: 代码的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SOM自组织映射神经网络的原理,详见博客:SOM网络1:原理讲解

训练的主函数

train_SO代码如下:

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_fun=None,                               #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_fun is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化

PCA 初始化权重

def weights_PCA(X,Y,data):N,D=np.shape(data)weights=np.zeros([X,Y,D])pc_value,pc=np.linalg.eig(np.cov(np.transpose(data)))   # pc_vale为特征值,pc 为特征向量 DXD维pc_order=np.argsort(-pc_value)  # 特征值从大到小排序,并返回Index# 对W:[X,Y,D]进行初始化for i,c1 in enumerate(np.linspace(-1,1,X)):for j,c2 in enumerate(np.linsapce(-1,1,Y)):weights[i,j]=c1*pc[pc_order[0]]+c2*pc[pc_order[1]]   #利用最大的2个特征值对应的特征向量加权组合成i,j位置的D维表征向量	

完整的训练代码

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_func=weights_PCA,                        #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_func is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化for n_epoch in range(N_epoch):print("Epoch %d" %(n_epoch+1))#打乱样本次序index=rng.permulation(np.arange(N))for n_step,_id in enumerate(index):# 取一个样本x=datas[_id]#计算learning rate (eta)t=N*n_epoch + n_stepeta=get_learning_rate(init_lr,t,N_steps)#计算样本距离输出的每个节点的距离,并获取激活点的位置winner=get_winner_index(x,weights,dis_func)#根据激活点的位置计算临近点的权重   随着迭代的进行sigma也需要不断减少new_sigma=get_learning_rate(sigma,t,N_steps)  # sigma 更新的方式和学习率一样g=neighborhood_fun(X,Y,winner,new_sigma) g=g*eta#进行权重的更新weights =  weights + np.expand_dims(g,-1)*(x-weights)    # 打印量化误差print("quantization_error=%.4f" %(get_quantization_error(data,weights))) return weights#计算学习率
def get_learning_rate(lr,t,max_steps):  # t当前的steps   max_steps=N x epoch  (N样本数)		return lr/(1+t/(max_steps/2))	# 获取激活(获胜点)节点的位置,与x距离最小的输出节点位置
def get_winner_index(x,w,dis_func=euclidean_distance):# 计算输入样本和各个节点的距离dis = dis_func(x,w)#找到距离最小的位置index=np.where(dis ==np.min(dis))return (index[0][0],index[1][0])#利用高斯距离法计算临近点的权重
# X,Y模板大小,c中心点的位置  def gaussion_neighborhood(X,Y,c,sigma)xx,yy=np.meshgrid(np.arange(X),np.arange(Y))d=2*sigma*sigmaax=np.exp(-np.power(xx-xx.T[c],2)/d)ay=np.exp(-np.power(yy-yy.T[c],2)/d)return (ax*ay).T# 计算欧式距离
def euclidean_distance(x,w):dis=np.expand_dims(x,axis=(0,1))-w   # x:D w:[X,Y,D]  因此需要增加两维 x:D->x:[1,1,D]return np.linalg.norm(dis,axis=-1)                   # 输出[X,Y] 二范数 即为欧拉距离# 特征标准化 (x-mu)/std
def feature_normalization(data):mu=np.mean(data,axis=0,keepdims=True)sigma=np.std(data,axis=0,keepdims=True)return (data-mu)/sigmadef get_U_Matrix(weights):X,Y,D=np.shape(weights)um=na.nan * np.zeros((X,Y,8))  #8 领域ii=[0 ,-1,-1,-1,0,1,1, 1]jj=[-1,-1, 0, 1,1,1,0,-1]for x in range(X):for y in range(Y):w_2=weights[x,y]for k,(i,j) in enumerate(zip(ii,jj)):if(x+i >=0 and x+i<X and y+j>=0 and y+j <Y):w_1=weights[x+i,y+j]um[x,y,k]=np.linalg.norm(w_1-w_2)um=np.nansum(um,axis=2)return um/um.max()#计算量化误差   计算每个样本点和映射点之间的平均距离
def get_quantization_error(data,weights):w_x,w_y=zip(*[get_winner_index(d,weights) for d in datas])error=datas-weights[w_x,w_y]             # 数据域聚类中心的距离error=np.linalg.norm(error,axis=-1)  return np.mean(error)

训练完成后,返回输出节点的weights,维度为 [ X , Y , D ] [X,Y,D] [X,Y,D], 相当于固化了模型的权重weights, weights表征了当前的训练样本。

测试

if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()

测试数据
在这里插入图片描述
U_Matrix
在这里插入图片描述

  • 颜色越深说明与邻近点的关系越强烈,颜色越强说明与邻近点的关系越不强烈。

测试分类的效果

```python
if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()# 查看分类的效果markers=['o','s','D']colors =['C0','C1','C2']for i in range(N):x =datas[i]w=get_winner_index(x,weights)i_lab=labs[i]-1plt.plot(w[0]+.5,w[1]+.5,markers[i_lab],markerfacecolor='None'markeredgecolor=colors[i_lab],markersize=12,markeredgewidth=2)plt.show()	  

在这里插入图片描述

这篇关于SOM网络2: 代码的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472552

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja