高性能队列框架-Disruptor使用、Netty结合Disruptor大幅提高数据处理性能

本文主要是介绍高性能队列框架-Disruptor使用、Netty结合Disruptor大幅提高数据处理性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高性能队列框架-Disruptor

首先介绍一下 Disruptor 框架,Disruptor是一个通用解决方案,用于解决并发编程中的难题(低延迟与高吞吐量),Disruptor 在高并发场景下性能表现很好,如果有这方面需要,可以深入研究其源码

其本质还是一个队列(环形),与其他队列类似,也是基于生产者消费者模式设计,只不过这个队列很特别是一个环形队列。这个队列能够在无锁的条件下进行并行消费,也可以根据消费者之间的依赖关系进行先后次序消费。

使用 Disruptor 框架的好处就是:速度快!

生产者向 RingBuffer 写入,消费者从 RingBuffer 中消费,基于 Disruptor 开发的系统每秒可以支持 600 万订单

下边介绍一下 Disruptor 框架中常见概念:

RingBuffer

基于数组实现的一个环,用于在不同线程间传递数据,RingBuffer 有一个 Sequencer 序号器,指向数组中下一个可用元素

在这里插入图片描述

Sequencer 序号器

该类是 Disruptor 核心,有两个实现类:

  • SingleProducerSequencer 单生产者
  • MultiProducerSequencer 多生产者

WaitStrategy 等待策略

消费者等待生产者将数据放入 RingBuffer,有不同的等待策略:

  • BlockingWaitStrategy:阻塞等待策略,最低效的策略,但其对 CPU 的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现。
  • SleepingWaitStrategy:休眠等待策略,性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景。
  • YieldingWaitStrategy:产生等待策略,性能最好,适合用于低延迟的系统,在要求极高性能且事件处理线程数小于 CPU 逻辑核心数的场景中,推荐使用。是无锁并行

Disruptor 的设计中是没有锁的,在 Disruptor 中出现线程竞争的地方也就是 RingBuffer 中的下标 Sequence,Disruptor 通过 CAS 操作来代替加锁,从而提升性能,CAS 的性能大约是加锁操作性能的 8 倍,

伪共享问题

Disruptor 中还会出现伪共享问题

参考:《高性能队列——Disruptor》——美团技术团队

缓存行

Cache 是由很多个 cache line 组成,每个 cache line 通常是 64B,并且可以有效地引用主内存中的一块地址。

Java 中 long 类型变量是 8B,因此一个 cache line 可以存储 8 个 long 类型变量

CPU 每次从主存中拉取数据时,会把相邻的数据也存入同一个 cache line,那么在访问一个 long 数组时,如果数组中的一个值被加入缓存中,那么也会加载另外 7 个

伪共享问题

在 ArrayBlockingQueue 中有 3 个成员变量:

  • takeIndex:需要被取走元素下标
  • putIndex:可被插入元素下标
  • count:队列元素数量

这 3 个变量如果在同一个 cache line 中的话,假如此时有两个线程对这 3 个变量进行操作,线程 A 修改了 takeIndex 变量,那么会导致线程 B 中这个变量所在的 cache line 失效,需要从内存重新读取

这种无法充分利用 cache line 特性的线程,成为 伪共享

解决方案就是,增大数组元素之间的间隔,使得不同线程存取的元素位于不同的 cache line 上,通过空间换时间

在jdk1.8中,有专门的注解 @Contended 来避免伪共享,更优雅地解决问题。

Disruptor 通过哪些设计来解决队列速度慢的问题了呢?

  • 环形数组 RingBuffer

    采用环形数组,空间重复利用,避免垃圾回收,并且数组对于缓存机制更加友好

  • 元素位置定位

    数组长度 2^n,通过位运算,加快定位速度

  • 无锁设计

    通过 CAS 代替锁来保证操作的线程安全

    在美团内部,很多高并发场景借鉴了Disruptor的设计,减少竞争的强度。其设计思想可以扩展到分布式场景,通过无锁设计,来提升服务性能

Disruptor 多个生产者、多个消费者原理

在 Disruptor 中,多个生产者生产数据时,每个线程获取不同的一段数组空间再加上 CAS 操作,可以避免多个线程重复写同一个元素

在读取时,如何避免读取到未写的元素呢?

Disruptor 中新创建了一个与 RingBuffer 大小相同的 available Buffer,当某个位置写入成功,就在 available Buffer 中标记为 true,通过该标记来读取已经写好的元素

Disruptor 单生产者单消费者实战

首先引入依赖:

<dependency><groupId>com.lmax</groupId><artifactId>disruptor</artifactId><version>3.3.4</version>
</dependency>

定义订单:

/*** 订单对象,生产者要生产订单对象,消费者消费订单对象*/
public class OrderEvent {// 订单的价格private long value;public long getValue() {return value;}public void setValue(long value) {this.value = value;}
}

定义工厂类,用于创建订单对象:

/*** 建立一个工厂类,用于创建Event的实例(OrderEvent)*/
public class OrderEventFactory implements EventFactory<OrderEvent> {@Overridepublic OrderEvent newInstance() {// 生产对象return new OrderEvent();}
}

定义事件处理器,用于监听消费订单:

/*** 消费者*/
public class OrderEventHandler implements EventHandler<OrderEvent> {@Overridepublic void onEvent(OrderEvent orderEvent, long l, boolean b) {System.err.println("消费者:" + orderEvent.getValue());}
}

定义生产者,用于生产订单:

public class OrderEventProducer {// ringBuffer 用于存储数据private RingBuffer<OrderEvent> ringBuffer;public OrderEventProducer(RingBuffer<OrderEvent> ringBuffer) {this.ringBuffer = ringBuffer;}// 生产者向 ringBuffer 中生产消息public void sendData(ByteBuffer data) {// 1. 生产者先从 ringBuffer 拿到可用的序号long sequence = ringBuffer.next();try {// 2.根据这个序号找到具体的 OrderEvent 元素, 此时获取到的 OrderEvent 对象是一个没有被赋值的空对象OrderEvent event = ringBuffer.get(sequence);// 3. 设置订单价格event.setValue(data.getLong(0));} catch (Exception e) {e.printStackTrace();} finally {// 4. 提交发布操作ringBuffer.publish(sequence);}}
}

测试类:

public class Main {public static void main(String[] args) {// 初始化一些参数OrderEventFactory orderEventFactory = new OrderEventFactory();int ringBufferSize = 8;ExecutorService executor = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());/*** 参数说明:* eventFactory:消息(event)工厂对象* ringBufferSize: 容器的长度* executor:线程池,建议使用自定义的线程池,线程上限。* ProducerType:单生产者或多生产者* waitStrategy:等待策略*/// 1. 实例化disruptor对象Disruptor<OrderEvent> disruptor = new Disruptor<OrderEvent>(orderEventFactory,ringBufferSize,executor,ProducerType.SINGLE,new BlockingWaitStrategy());// 2. 向 Disruptor 中添加消费者,消费者监听到 Disruptor 的 RingBuffer 中有数据了,就会进行消费disruptor.handleEventsWith(new OrderEventHandler());// 3. 启动disruptordisruptor.start();// 4. 拿到存放数据的容器:RingBufferRingBuffer<OrderEvent> ringBuffer = disruptor.getRingBuffer();// 5. 创建生产者OrderEventProducer producer = new OrderEventProducer(ringBuffer);// 6. 通过生产者向容器 RingBuffer 中存放数据ByteBuffer bb = ByteBuffer.allocate(8);for (long i = 0; i < 100; i++) {bb.putLong(0, i);producer.sendData(bb);}// 7.关闭disruptor.shutdown();executor.shutdown();}
}

Disruptor 多生产者和多消费者实战

定义消费者,用于从 ringBuffer 中消费订单:

public class ConsumerHandler implements WorkHandler<Order> {// 每个消费者有自己的idprivate String comsumerId;// 计数统计,多个消费者,所有的消费者总共消费了多个消息。private static AtomicInteger count = new AtomicInteger(0);private Random random = new Random();public ConsumerHandler(String comsumerId) {this.comsumerId = comsumerId;}// 当生产者发布一个 sequence,ringbuffer 中一个序号,里面生产者生产出来的消息,生产者最后publish发布序号// 消费者会监听,如果监听到,就会ringbuffer去取出这个序号,取到里面消息@Overridepublic void onEvent(Order event) throws Exception {// 模拟消费者处理消息的耗时,设定1-4毫秒之间TimeUnit.MILLISECONDS.sleep(1 * random.nextInt(5));System.out.println("当前消费者:" + this.comsumerId + ", 消费信息 ID:" + event.getId());// count 计数器增加 +1,表示消费了一个消息count.incrementAndGet();}// 返回所有消费者总共消费的消息的个数。public int getCount() {return count.get();}
}

定义订单:

@Data
public class Order {private String id;private String name;private double price;public Order() {}
}

定义生产者,用于向 ringBuffer 中生产订单:

public class Producer {private RingBuffer<Order> ringBuffer;// 为生产者绑定 ringBufferpublic Producer(RingBuffer<Order> ringBuffer) {this.ringBuffer = ringBuffer;}// 发送数据public void sendData(String uuid) {// 1. 获取到可用sequencelong sequence = ringBuffer.next();try {Order order = ringBuffer.get(sequence);order.setId(uuid);} finally {// 2. 发布序号ringBuffer.publish(sequence);}}
}

测试类:

public class TestMultiDisruptor {public static void main(String[] args) throws InterruptedException {// 1. 创建 RingBuffer,Disruptor 包含 RingBufferRingBuffer<Order> ringBuffer = RingBuffer.create(ProducerType.MULTI, // 多生产者new EventFactory<Order>() {@Overridepublic Order newInstance() {return new Order();}}, 1024 * 1024, new YieldingWaitStrategy());// 2. 创建 ringBuffer 屏障SequenceBarrier sequenceBarrier = ringBuffer.newBarrier();// 3. 创建多个消费者数组ConsumerHandler[] consumers = new ConsumerHandler[10];for (int i = 0; i < consumers.length; i++) {consumers[i] = new ConsumerHandler("C" + i);}// 4. 构建多消费者工作池WorkerPool<Order> workerPool = new WorkerPool<Order>(ringBuffer, sequenceBarrier, new EventExceptionHandler(), consumers);// 5. 设置多个消费者的 sequence 序号,用于单独统计消费者的消费进度。消费进度让RingBuffer知道ringBuffer.addGatingSequences(workerPool.getWorkerSequences());// 6. 启动 workPoolworkerPool.start(Executors.newFixedThreadPool(5)); // 在实际开发,自定义线程池。final CountDownLatch latch = new CountDownLatch(1);// 100 个生产者向 ringBuffer 生产数据,每个生产者发送 100 个数据,共 10000 个数据for (int i = 0; i < 100; i ++) {final Producer producer = new Producer(ringBuffer);new Thread(new Runnable() {@Overridepublic void run() {try {// 先等待创建完 100 个生产者之后,再发送数据latch.await();} catch (Exception e) {e.printStackTrace();}// 每个生产者发送 100 个数据for (int j = 0; j < 100; j ++) {producer.sendData(UUID.randomUUID().toString());}}}).start();}// 把所有线程都创建完TimeUnit.SECONDS.sleep(2);// 唤醒线程让生产者开始发送数据,开始运行100个线程latch.countDown();// 等待数据发送完毕TimeUnit.SECONDS.sleep(10);System.out.println("任务总数:" + consumers[0].getCount());}static class EventExceptionHandler implements ExceptionHandler<Order> {//消费时出现异常@Overridepublic void handleEventException(Throwable throwable, long l, Order order) {}//启动时出现异常@Overridepublic void handleOnStartException(Throwable throwable) {}//停止时出现异常@Overridepublic void handleOnShutdownException(Throwable throwable) {}}
}

Disruptor 与 Netty 结合大幅提高数据处理性能

使用 Netty 接收处理数据时,不要在工作线程上进行处理,降低 Netty 性能,可以使用异步机制,通过线程池来处理,异步处理的话,就是用 Disruptor 来作为任务队列即可

即在 Netty 收到处理数据请求时,封装成一个事件,向 Disruptor 中推送,再通过多消费者来进行处理,可以提升 Netty 处理数据时的性能,流程图如下(绿色部分为通过 Disruptor 优化部分):

在这里插入图片描述

这篇关于高性能队列框架-Disruptor使用、Netty结合Disruptor大幅提高数据处理性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472112

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他