【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题

本文主要是介绍【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛
赛道 B复赛:电商零售商家需求预测及库存优化问题

问题一
目标:制定补货计划,基于预测销量。
背景:固定库存盘点周期NRT=1, 提前期LT=3天。
初始条件:所有商品期初库存为5,持有成本及缺货成本与商品价格正相关。
策略:周期性盘点库存策略(s,S)。
数据处理:需结合历史及预测需求量。
任务:提供2023-05-16至2023-05-30期间的补货计划(每天的s和S值)。
目标指标:降低成本,提升服务水平,降低库存周转天数。
问题二
目标:撰写关于电商零售商家需求预测及库存优化问题的总结报告。
内容要求:报告中需要明确团队方案的优缺点。
附件说明
结果表4:库存补货结果表,包含商家编码、商品编码、仓库编码、日期、库存决策变量(s和S)、当天期初库存、当天期末库存、预测需求量和补货量等字段。

总结问题一团队认为可以采用的方法为:基于模拟退火求解规划问题;基于遗传算法求解规划问题;使用库存管理理论,如经济订货量(EOQ)模型;基于机器学习的预测模型;基于修正机器学习的预测模型
团队将选取至少3种方法分别进行求解。

mbd.pub/o/bread/mbd-ZZeckpxs

商品价格数据的Excel文件:
这个数据表包含了商品编号(product_no)和相应的价格(price)。

预测结果表,包含以下信息:
商家编号(seller_no)
商品编号(product_no)
仓库编号(warehouse_no)
日期范围(date),这里显示的是从2023-05-16至2023-05-30的日期范围
预测需求量(forecast_qty)
对原始数据做可视化:

在这里插入图片描述

预测需求量的分布:这个图表显示了预测需求量的分布情况。可以看到需求量的分布范围和集中趋势。
商品价格的分布:这个图表显示了商品价格的分布情况。通过这个图表,我们可以了解商品价格的波动和集中趋势。

在这里插入图片描述

每个商家的预测产品数量:这个图表显示了各个商家的预测产品数量。这有助于了解哪些商家的产品数量较多,可能需要更多关注。
每个仓库的产品数量:这个图表展示了每个仓库中的产品数量。这有助于分析不同仓库的库存分布情况。
最常见的商品价格(前10名):这个图表显示了最常见的商品价格及其出现频率。这可以帮助我们理解价格分布的重点区域。

在这里插入图片描述

价格分布图:这个直方图显示了商品价格的分布情况,并包含一个核密度估计(KDE)曲线,可以帮助理解价格的总体分布趋势。
价格箱线图:这个箱线图提供了商品价格的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
价格密度图:这个密度图展示了价格的概率密度分布,可以帮助更详细地了解价格分布的形状。

补货模型的构建步骤

  1. 数据整合
    将商品价格数据与预测需求数据结合,以便在补货决策中考虑成本。
  2. 确定补货策略
    我们将采用周期性盘点库存策略(s, S)。
    根据商品的预测需求和价格确定每个商品的s和S值。
  3. 考虑库存成本
    考虑持有成本(基于商品价格和库存水平)和缺货成本(当需求不能被满足时)。
    目标是平衡成本和服务水平。
  4. 模型实现
    使用Python来实现这个模型。
    可以考虑使用库存管理理论,如经济订货量(EOQ)模型
    或者基于机器学习的预测模型。
    或者构建规划方程
  5. 模型测试与优化
    测试模型在不同参数下的表现。
    根据成本、库存水平和服务水平进行优化。
  6. 结果输出
    输出2023-05-16至2023-05-30期间的补货计划

结合了预测需求数据和商品价格来计算每个商品的补货点(s值)和目标库存水平(S值)。这里,s和S的计算基于简单的假设
需要考虑了持有成本和缺货成本,这些成本根据商品价格和设定的比率计算得出。
下一步
参数调整:根据具体需求和成本考虑,调整s和S的计算方法。
模型验证:测试模型以确保其准确性和有效性。
优化策略:可能需要进一步优化策略,以更好地适应实际情况。
#初步代码
import pandas as pd
import numpy as np

File paths

forecast_results_file_path = ‘结果表1-预测结果表.xlsx’
product_price_file_path = ‘商品价格数据.xlsx’

Load the forecast results data

forecast_results_data = pd.read_excel(forecast_results_file_path)

Load the product price data

product_price_data = pd.read_excel(product_price_file_path)

Constants and assumptions

initial_inventory = 5 # Initial inventory level for all products
lead_time = 3 # Lead time in days
review_period = 1 # Review period in days
holding_cost_rate = 0.01 # Holding cost rate (percentage of product price)
shortage_cost_rate = 0.02 # Shortage cost rate (percentage of product price)

Merging forecast data with price data

merged_data = forecast_results_data.merge(product_price_data, on=‘product_no’, how=‘left’)

Function to calculate s and S values for each product

def calculate_replenish_points(row):
forecast_demand = row[‘forecast_qty’]
price = row[‘price’]
holding_cost_per_unit = price * holding_cost_rate
shortage_cost_per_unit = price * shortage_cost_rate
return s, S

Apply the function to each row in the dataframe

merged_data[[‘s’, ‘S’]] = merged_data.apply(lambda row: calculate_replenish_points(row), axis=1, result_type=“expand”)

Display the updated dataframe

merged_data.head()

初步预测结果对可视化

在这里插入图片描述

预测数量分布图:这个直方图展示了预测数量的分布情况,并包含一个核密度估计(KDE)曲线,有助于理解预测数量的总体分布趋势。
预测数量箱线图:这个箱线图提供了预测数量的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
预测数量密度图:这个密度图显示了预测数量的概率密度分布,可以更详细地了解预测数量分布的形状。

这篇关于【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471772

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499