联邦学习新探:端边云协同引领大模型训练的未来 | INFOCOM 2024

本文主要是介绍联邦学习新探:端边云协同引领大模型训练的未来 | INFOCOM 2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

联邦学习新探:端边云协同引领大模型训练的未来 | INFOCOM 2024

在人工智能领域,无论是从理论还是实践的角度,如何在保护用户隐私和数据安全的前提下,提高模型训练的效率和质量,都是一个重要的研究焦点。联邦学习(Federated Learning)就是一种能够在不损害用户隐私的前提下,训练人工智能模型的技术。随着云计算、边缘计算和终端设备的发展,端边云协同(End-Edge-Cloud Collaboration)计算范式的出现,为联邦学习算法的实施与部署提供了新的路径。由中国科学院计算技术研究所、中国科学院大学、中关村实验室和北京交通大学的研究团队共同完成的论文 “Agglomerative Federated Learning: Empowering Larger Model Training via End-Edge-Cloud Collaboration”,在INFOCOM 2024上提供了一个全新的视角,引领我们进入了联邦学习和端边云协同的新纪元。
在这里插入图片描述
端边云协同是一种新兴的计算范式,它借助远端云数据处理中心、近端边缘服务器和终端设备的分布式算力,提供了一个高效、灵活和可扩展的计算框架。在端边云协同的架构下,云服务器、边缘服务器和终端设备能够充分发挥其各自的优势。云服务器有强大的计算能力,适合处理大规模的数据处理和模型训练任务;边缘服务器靠近用户,可以处理时效性强、对延迟敏感的任务;终端设备则可以在保护用户隐私的前提下,利用丰富的用户数据进行本地化的模型训练和优化。在这种模式下,云服务器、边缘服务器和终端设备可以在不同的计算层级之间进行协作,共同承担计算任务,提高整体的计算效率。在这个背景下,作者探索了如何通过端边云协同来帮助联邦学习处理更大模型的训练任务。
在这里插入图片描述
本文作者提出了凝聚联邦学习(Agglomerative Federated Learning)框架,该框架通过桥接样本在线蒸馏协议(Bridge Sample Based Online Distillation Protocol),递归地组织树状拓扑的端边云算力网,实现了端边云之间每对父子节点的模型无关(Model Agnostic)的协同训练。具体来说,低层级节点先用一个轻量级编码器对本地数据进行编码,再上传编码到上级节点;上级节点用一个预训练好的解码器对编码生成伪样本。不同层级节点之间的模型在这些伪样本上进行在线蒸馏,逐层向上传递知识。这样,不同层节点可以根据本地算力资源训练大小合适的模型,而云端集成所有知识后可以训练规模显著超过端侧设备承载能力的模型。
在这里插入图片描述
此外,本文作者还证明了该框架在端边云算力网中的灵活性,即每一个非根节点算力节点均可在同一层级随意切换接入的父节点,这为算力网中单点宕机修复、负载均衡等操作提供了空间。
实验结果表明,相比现有框架,凝聚联邦学习可以带来模型精度和收敛性的显著提升。
在这里插入图片描述
在这里插入图片描述
论文地址:https://www.techrxiv.org/articles/preprint/Agglomerative_Federated_Learning_Empowering_Larger_Model_Training_via_End-Edge-Cloud_Collaboration/24720759
代码链接:https://github.com/wuzhiyuan2000/FedAgg

这篇关于联邦学习新探:端边云协同引领大模型训练的未来 | INFOCOM 2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470200

相关文章

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示