基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统

本文主要是介绍基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本是前文的后续:

《python基于轻量级GhostNet模型开发构建23种常见中草药图像识别系统》

前文主要是在小批量小种类数据集上尝试开发构建基于轻量级CNN模型的中草药图像识别系统,本文的初衷是想要构建一个大类别大数据集的基础,但是无奈发现中草药的种类达到了千余种,且数据采集和人工处理的工作量极大,无奈只好暂时搁置,等待空闲时间再继续投入,这里是爬取构建了40种常见的中草药数据集来开发构建基于MnasNet的识别系统,首先看下实例效果:

MnasNet(Mobile Neural Architecture Search Net)是一种基于神经网络架构搜索(Neural Architecture Search,NAS)的轻量级卷积神经网络模型。通过自动化神经网络架构搜索的方式,找到一种适用于移动设备的高效网络结构。它采用强化学习算法和多目标优化策略来搜索最佳的网络架构。通过对网络的不同部分进行搜索和组合,MnasNet能够在保持较小模型规模的同时,提供较高的性能和准确性。

在设计一个模型搜索算法时,有三个最重要的点:
1、优化目标:决定了搜索出来的网络框架的性能和效率;
2、搜索空间:决定了网络是由哪些基本模块组成的;
3、优化策略:决定了强化学习的收敛速度。

构建原理
MnasNet模型的算法构建原理是通过使用弱连接搜索算法和自动化网络设计方法来构建高效的卷积神经网络模型。MNasNet的搜索空间很大程度上参考了MobileNet v2,通过强化学习的方式得到了超越其它模型搜索算法和其参照的MobileNet v2算法,从中可以看出人工设计和强化学习互相配合应该是一个更好的发展方向。MNasNet中提出的层次化搜索空间可以生成每个网络块都不通的网络结构,这对提升网络的表现也是有很大帮助的,但这点也得益于参考MobileNet v2设计搜索空间后大幅降低的搜索难度。

在弱连接搜索算法中,MnasNet使用了一种基于弱连接的搜索策略,通过在网络的每个位置引入弱连接,然后通过选择性地增加和删除连接来搜索网络结构。这种方法可以显著减少搜索空间并提高搜索效率。

在自动化网络设计方法中,MnasNet使用了一种自动化的网络设计方法来优化网络结构。该方法通过定义一组可行的操作和权重空间,并使用强化学习算法来搜索最优的网络结构。这种方法可以自动地学习网络结构,并在保持高性能的同时减少模型的大小和计算资源的使用。

优点
高性能:MnasNet通过使用弱连接搜索算法和自动化网络设计方法,能够搜索和设计出高性能的卷积神经网络。这些网络在多个图像分类和目标检测任务上展示了较好的性能。

轻量化:MnasNet在网络设计过程中考虑了模型的大小和计算资源的使用。通过自动化网络设计方法,MnasNet能够减少模型的大小和计算量,从而在保持高性能的同时实现轻量化。

可扩展性:MnasNet的自动化网络设计方法具有较强的可扩展性。它可以根据不同的任务和数据集进行自动化的网络设计,并能够适应不同的计算资源限制和应用场景需求。

缺点
训练时间较长:由于MnasNet使用了自动化网络设计方法,需要在大规模的搜索空间中进行搜索和训练,因此训练时间较长。

部署和推理速度较慢:由于MnasNet的网络结构相对较复杂,导致在部署和推理过程中需要更多的计算资源。特别是在计算资源有限的设备上,可能会影响模型的部署和实时推理效果。

MnasNet模型通过弱连接搜索算法和自动化网络设计方法构建了高性能和轻量化的模型。然而,它的训练时间较长,部署和推理速度较慢,需要在实际应用中综合考虑这些因素。

MnasNet核心实现如下所示:

class MNASNet(torch.nn.Module):def __init__(self,alpha: float,num_classes: int = 1000,dropout: float = 0.2) -> None:super(MNASNet, self).__init__()assert alpha > 0.0self.alpha = alphaself.num_classes = num_classesdepths = _get_depths(alpha)layers = [nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False),nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(depths[0], depths[0], 3, padding=1, stride=1,groups=depths[0], bias=False),nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(depths[0], depths[1], 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(depths[1], momentum=_BN_MOMENTUM),_stack(depths[1], depths[2], 3, 2, 3, 3, _BN_MOMENTUM),_stack(depths[2], depths[3], 5, 2, 3, 3, _BN_MOMENTUM),_stack(depths[3], depths[4], 5, 2, 6, 3, _BN_MOMENTUM),_stack(depths[4], depths[5], 3, 1, 6, 2, _BN_MOMENTUM),_stack(depths[5], depths[6], 5, 2, 6, 4, _BN_MOMENTUM),_stack(depths[6], depths[7], 3, 1, 6, 1, _BN_MOMENTUM),nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),]self.layers = nn.Sequential(*layers)self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),nn.Linear(1280, num_classes))self._initialize_weights()def forward(self, x: Tensor, need_fea=False) -> Tensor:if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.layers):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xreturn features, x.mean([2, 3])else:x = self.layers(x)x = x.mean([2, 3])return xdef _initialize_weights(self) -> None:for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out",nonlinearity="relu")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.BatchNorm2d):nn.init.ones_(m.weight)nn.init.zeros_(m.bias)elif isinstance(m, nn.Linear):nn.init.kaiming_uniform_(m.weight, mode="fan_out",nonlinearity="sigmoid")nn.init.zeros_(m.bias)def cam_layer(self):return self.layers[-1]def _load_from_state_dict(self, state_dict: Dict, prefix: str, local_metadata: Dict, strict: bool,missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str]) -> None:version = local_metadata.get("version", None)assert version in [1, 2]if version == 1 and not self.alpha == 1.0:depths = _get_depths(self.alpha)v1_stem = [nn.Conv2d(3, 32, 3, padding=1, stride=2, bias=False),nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(32, 32, 3, padding=1, stride=1, groups=32,bias=False),nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(32, 16, 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(16, momentum=_BN_MOMENTUM),_stack(16, depths[2], 3, 2, 3, 3, _BN_MOMENTUM),]for idx, layer in enumerate(v1_stem):self.layers[idx] = layersuper(MNASNet, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys,unexpected_keys, error_msgs)

本文中提出的数据集源自自主构建处理,共包含以下类目,如下所示:

三七
人参
佛手片
元胡
厚朴
天南星
天麻
安息香
川芎
巴戟天
当归
木香
朱砂
杜仲
枸杞
桔梗
熊胆
牛黄
玉果
瓜蒌
甘草
生地
白前
白术
白芍
羚羊角
肉苁蓉
苏合香
苦参
茯苓
荜拨
菊花
蔓荆子
贝母
连召
银花
香附
麦冬
黄芪
黄连

后续会再此基础上进行扩充类目。

数据实例如下所示:

数据分布可视化如下所示:

整体训练过程loss如下所示:

准确率曲线如下所示:

混淆矩阵如下所示:

我们对每个类别进行了单独的指标评测,详情如下所示:

+--------+-----------+---------+----------+---------+----------+
|  三七  |  0.70968  | 0.73333 | 0.72131  | 0.71376 | 0.73333  |
|  人参  |  0.89286  | 0.86207 | 0.87719  | 0.87409 | 0.86207  |
| 佛手片 |  0.83871  | 0.89655 | 0.86667  | 0.86312 | 0.89655  |
|  元胡  |  0.66667  | 0.68966 | 0.67797  | 0.66954 | 0.68966  |
|  厚朴  |  0.56667  | 0.60714 | 0.58621  | 0.57557 | 0.60714  |
| 天南星 |  0.70588  | 0.82759 | 0.76190  | 0.75528 | 0.82759  |
|  天麻  |  0.80000  | 0.85714 | 0.82759  | 0.82316 | 0.85714  |
| 安息香 |  0.63636  | 0.70000 | 0.66667  | 0.65735 | 0.70000  |
|  川芎  |  0.57576  | 0.67857 | 0.62295  | 0.61280 | 0.67857  |
| 巴戟天 |  0.87097  | 0.93103 | 0.90000  | 0.89734 | 0.93103  |
|  当归  |  0.58974  | 0.79310 | 0.67647  | 0.66688 | 0.79310  |
|  木香  |  0.64286  | 0.64286 | 0.64286  | 0.63399 | 0.64286  |
|  朱砂  |  0.71875  | 0.79310 | 0.75410  | 0.74745 | 0.79310  |
|  杜仲  |  0.77273  | 0.58621 | 0.66667  | 0.65929 | 0.58621  |
|  枸杞  |  0.96552  | 0.96552 | 0.96552  | 0.96463 | 0.96552  |
|  桔梗  |  0.75000  | 0.62069 | 0.67925  | 0.67179 | 0.62069  |
|  熊胆  |  0.61538  | 0.55172 | 0.58182  | 0.57166 | 0.55172  |
|  牛黄  |  0.84848  | 0.96552 | 0.90323  | 0.90057 | 0.96552  |
|  玉果  |  0.76667  | 0.76667 | 0.76667  | 0.76045 | 0.76667  |
|  瓜蒌  |  0.73333  | 0.75862 | 0.74576  | 0.73911 | 0.75862  |
|  甘草  |  0.77778  | 0.72414 | 0.75000  | 0.74380 | 0.72414  |
|  生地  |  0.53846  | 0.50000 | 0.51852  | 0.50702 | 0.50000  |
|  白前  |  0.83333  | 0.86207 | 0.84746  | 0.84346 | 0.86207  |
|  白术  |  0.78571  | 0.75862 | 0.77193  | 0.76617 | 0.75862  |
|  白芍  |  0.86667  | 0.89655 | 0.88136  | 0.87825 | 0.89655  |
| 羚羊角 |  0.76000  | 0.65517 | 0.70370  | 0.69666 | 0.65517  |
| 肉苁蓉 |  0.52174  | 0.42857 | 0.47059  | 0.45876 | 0.42857  |
| 苏合香 |  0.60000  | 0.41379 | 0.48980  | 0.47913 | 0.41379  |
|  苦参  |  0.82759  | 0.82759 | 0.82759  | 0.82315 | 0.82759  |
|  茯苓  |  0.71429  | 0.68966 | 0.70175  | 0.69422 | 0.68966  |
|  荜拨  |  0.96552  | 0.96552 | 0.96552  | 0.96463 | 0.96552  |
|  菊花  |  0.89286  | 0.86207 | 0.87719  | 0.87409 | 0.86207  |
| 蔓荆子 |  0.87879  | 1.00000 | 0.93548  | 0.93371 | 1.00000  |
|  贝母  |  0.87500  | 0.96552 | 0.91803  | 0.91582 | 0.96552  |
|  连召  |  0.91304  | 0.72414 | 0.80769  | 0.80333 | 0.72414  |
|  银花  |  0.87097  | 0.93103 | 0.90000  | 0.89734 | 0.93103  |
|  香附  |  0.57576  | 0.65517 | 0.61290  | 0.60228 | 0.65517  |
|  麦冬  |  1.00000  | 0.96552 | 0.98246  | 0.98201 | 0.96552  |
|  黄芪  |  0.86364  | 0.67857 | 0.76000  | 0.75477 | 0.67857  |
|  黄连  |  0.66667  | 0.62069 | 0.64286  | 0.63400 | 0.62069  |
+--------+-----------+---------+----------+---------+----------+

部分类别精度不高,整体来看还是相对稳定的。

这篇关于基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469102

相关文章

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐