拓端tecdat|R语言时间序列平稳性几种单位根检验(ADF,KPSS,PP)及比较分析

本文主要是介绍拓端tecdat|R语言时间序列平稳性几种单位根检验(ADF,KPSS,PP)及比较分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于单位根检验的研究报告,包括一些图形和统计输出。

时间序列模型根据研究对象是否随机分为确定性模型和随机性模型两大类。

随机时间序列模型即是指仅用它的过去值及随机扰动项所建立起来的模型,建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构。

μ是yt的均值;ψ是系数,决定了时间序列的线性动态结构,也被称为权重,其中ψ0=1;{εt}为高斯白噪声序列,它表示时间序列{yt}在t时刻出现了新的信息,所以εt称为时刻t的innovation(新信息)或shock(扰动)。

单位根测试是平稳性检验的特殊方法。单位根检验是对时间序列建立ARMA模型、ARIMA模型、变量间的协整分析、因果关系检验等的基础。

对于单位根测试,为了说明这些测试的实现,考虑以下系列


> plot(X,type="l")

  • Dickey Fuller(标准)

这里,对于Dickey-Fuller测试的简单版本,我们假设

https://latex.csdn.net/eq?%20Y_t=\alpha+\beta%20t+\varphi%20Y_{t-1}+\varepsilon_t

我们想测试是否(或不是)。我们可以将以前的表示写为

https://latex.csdn.net/eq?%20\Delta%20Y_t=\alpha+\beta%20t+[\varphi-1]%20Y_{t-1}+\varepsilon_t

所以我们只需测试线性回归中的回归系数是否为空。这可以通过学生t检验来完成。如果我们考虑前面的模型没有线性漂移,我们必须考虑下面的回归


Call:
lm(formula = z.diff ~ 0 + z.lag.1)Residuals:Min       1Q   Median       3Q      Max 
-2.84466 -0.55723 -0.00494  0.63816  2.54352 Coefficients:Estimate Std. Error t value Pr(>|t|)
z.lag.1 -0.005609   0.007319  -0.766    0.444Residual standard error: 0.963 on 238 degrees of freedom
Multiple R-squared:  0.002461,	Adjusted R-squared:  -0.00173 
F-statistic: 0.5873 on 1 and 238 DF,  p-value: 0.4442

我们的测试程序将基于学生t检验的值,

> summary(lm(z.diff~0+z.lag.1 ))$coefficients[1,3]
[1] -0.7663308

这正是计算使用的值

ur.df(X,type="none",lags=0)############################################################### 
# Augmented Dickey-Fuller Test Unit Root / Cointegration Test # 
############################################################### The value of the test statistic is: -0.7663

可以使用临界值(99%、95%、90%)来解释该值

> qnorm(c(.01,.05,.1)/2)
[1] -2.575829 -1.959964 -1.644854

如果统计量超过这些值,那么序列就不是平稳的,因为我们不能拒绝这样的假设。所以我们可以得出结论,有一个单位根。实际上,这些临界值是通过


############################################### 
# Augmented Dickey-Fuller Test Unit Root Test # 
############################################### Test regression none Call:
lm(formula = z.diff ~ z.lag.1 - 1)Residuals:Min       1Q   Median       3Q      Max 
-2.84466 -0.55723 -0.00494  0.63816  2.54352 Coefficients:Estimate Std. Error t value Pr(>|t|)
z.lag.1 -0.005609   0.007319  -0.766    0.444Residual standard error: 0.963 on 238 degrees of freedom
Multiple R-squared:  0.002461,	Adjusted R-squared:  -0.00173 
F-statistic: 0.5873 on 1 and 238 DF,  p-value: 0.4442Value of test-statistic is: -0.7663 Critical values for test statistics: 1pct  5pct 10pct
tau1 -2.58 -1.95 -1.62

R有几个包可以用于单位根测试。

Augmented Dickey-Fuller Testdata:  X
Dickey-Fuller = -2.0433, Lag order = 0, p-value = 0.5576
alternative hypothesis: stationary

这里还有一个检验零假设是存在单位根。但是p值是完全不同的。

p.value
[1] 0.4423705
testreg$coefficients[4]
[1] 0.4442389

  • 增广Dickey-Fuller检验

回归中可能有一些滞后现象。例如,我们可以考虑

https://latex.csdn.net/eq?%20\Delta%20Y_t=\alpha+\beta%20t+[\varphi-1]%20Y_{t-1}+\psi%20\Delta%20Y_{t-1}+\varepsilon_t

同样,我们需要检查一个系数是否为零。这可以用学生t检验来做。


> summary(lm(z.diff~0+z.lag.1+z.diff.lag ))Call:
lm(formula = z.diff ~ 0 + z.lag.1 + z.diff.lag)Residuals:Min       1Q   Median       3Q      Max 
-2.87492 -0.53977 -0.00688  0.64481  2.47556 Coefficients:Estimate Std. Error t value Pr(>|t|)
z.lag.1    -0.005394   0.007361  -0.733    0.464
z.diff.lag -0.028972   0.065113  -0.445    0.657Residual standard error: 0.9666 on 236 degrees of freedom
Multiple R-squared:  0.003292,	Adjusted R-squared:  -0.005155 
F-statistic: 0.3898 on 2 and 236 DF,  p-value: 0.6777coefficients[1,3]
[1] -0.7328138

该值是使用

> df=ur.df(X,type="none",lags=1)############################################### 
# Augmented Dickey-Fuller Test Unit Root Test # 
############################################### Test regression none Call:
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)Residuals:Min       1Q   Median       3Q      Max 
-2.87492 -0.53977 -0.00688  0.64481  2.47556 Coefficients:Estimate Std. Error t value Pr(>|t|)
z.lag.1    -0.005394   0.007361  -0.733    0.464
z.diff.lag -0.028972   0.065113  -0.445    0.657Residual standard error: 0.9666 on 236 degrees of freedom
Multiple R-squared:  0.003292,	Adjusted R-squared:  -0.005155 
F-statistic: 0.3898 on 2 and 236 DF,  p-value: 0.6777Value of test-statistic is: -0.7328 Critical values for test statistics: 1pct  5pct 10pct
tau1 -2.58 -1.95 -1.62

同样,也可以使用其他包:

Augmented Dickey-Fuller Testdata:  X
Dickey-Fuller = -1.9828, Lag order = 1, p-value = 0.5831
alternative hypothesis: stationary

结论是一样的(我们应该拒绝序列是平稳的假设)。

  • 带趋势和漂移的增广Dickey-Fuller检验

到目前为止,我们的模型中还没有包括漂移。但很简单(这将被称为前一过程的扩充版本):我们只需要在回归中包含一个常数,

> summary(lm)Residuals:Min       1Q   Median       3Q      Max 
-2.91930 -0.56731 -0.00548  0.62932  2.45178 Coefficients:Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.29175    0.13153   2.218   0.0275 *
z.lag.1     -0.03559    0.01545  -2.304   0.0221 *
z.diff.lag  -0.01976    0.06471  -0.305   0.7603  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9586 on 235 degrees of freedom
Multiple R-squared:  0.02313,	Adjusted R-squared:  0.01482 
F-statistic: 2.782 on 2 and 235 DF,  p-value: 0.06393

考虑到方差输出的一些分析,这里获得了感兴趣的统计数据,其中该模型与没有集成部分的模型进行了比较,以及漂移,

> summary(lmcoefficients[2,3]
[1] -2.303948
> anova(lm$F[2]
[1] 2.732912

这两个值也是通过

ur.df(X,type="drift",lags=1)############################################### 
# Augmented Dickey-Fuller Test Unit Root Test # 
############################################### Test regression drift Residuals:Min       1Q   Median       3Q      Max 
-2.91930 -0.56731 -0.00548  0.62932  2.45178 Coefficients:Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.29175    0.13153   2.218   0.0275 *
z.lag.1     -0.03559    0.01545  -2.304   0.0221 *
z.diff.lag  -0.01976    0.06471  -0.305   0.7603  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9586 on 235 degrees of freedom
Multiple R-squared:  0.02313,	Adjusted R-squared:  0.01482 
F-statistic: 2.782 on 2 and 235 DF,  p-value: 0.06393Value of test-statistic is: -2.3039 2.7329 Critical values for test statistics: 1pct  5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1  6.52  4.63  3.81

我们还可以包括一个线性趋势,

> temps=(lags+1):n
lm(z.diff~1+temps+z.lag.1+z.diff.lag )Residuals:Min       1Q   Median       3Q      Max 
-2.87727 -0.58802 -0.00175  0.60359  2.47789 Coefficients:Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.3227245  0.1502083   2.149   0.0327 *
temps       -0.0004194  0.0009767  -0.429   0.6680  
z.lag.1     -0.0329780  0.0166319  -1.983   0.0486 *
z.diff.lag  -0.0230547  0.0652767  -0.353   0.7243  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9603 on 234 degrees of freedom
Multiple R-squared:  0.0239,	Adjusted R-squared:  0.01139 
F-statistic:  1.91 on 3 and 234 DF,  p-value: 0.1287> summary(lmcoefficients[3,3]
[1] -1.98282
> anova(lm$F[2]
[1] 2.737086

而R函数返回

ur.df(X,type="trend",lags=1)############################################### 
# Augmented Dickey-Fuller Test Unit Root Test # 
############################################### Test regression trend Residuals:Min       1Q   Median       3Q      Max 
-2.87727 -0.58802 -0.00175  0.60359  2.47789 Coefficients:Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.3227245  0.1502083   2.149   0.0327 *
z.lag.1     -0.0329780  0.0166319  -1.983   0.0486 *
tt          -0.0004194  0.0009767  -0.429   0.6680  
z.diff.lag  -0.0230547  0.0652767  -0.353   0.7243  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9603 on 234 degrees of freedom
Multiple R-squared:  0.0239,	Adjusted R-squared:  0.01139 
F-statistic:  1.91 on 3 and 234 DF,  p-value: 0.1287Value of test-statistic is: -1.9828 1.8771 2.7371 Critical values for test statistics: 1pct  5pct 10pct
tau3 -3.99 -3.43 -3.13
phi2  6.22  4.75  4.07
phi3  8.43  6.49  5.47
  • KPSS 检验

在这里,在KPSS过程中,可以考虑两种模型:漂移模型或线性趋势模型。在这里,零假设是序列是平稳的。
代码是

ur.kpss(X,type="mu")####################### 
# KPSS Unit Root Test # 
####################### Test is of type: mu with 4 lags. Value of test-statistic is: 0.972 Critical value for a significance level of: 10pct  5pct 2.5pct  1pct
critical values 0.347 0.463  0.574 0.73

在这种情况下,有一种趋势

ur.kpss(X,type="tau")####################### 
# KPSS Unit Root Test # 
####################### Test is of type: tau with 4 lags. Value of test-statistic is: 0.5057 Critical value for a significance level of: 10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

再一次,可以使用另一个包来获得相同的检验(但同样,不同的输出)

KPSS Test for Level Stationaritydata:  X
KPSS Level = 1.1997, Truncation lag parameter = 3, p-value = 0.01> kpss.test(X,"Trend")KPSS Test for Trend Stationaritydata:  X
KPSS Trend = 0.6234, Truncation lag parameter = 3, p-value = 0.01

至少有一致性,因为我们一直拒绝假设。

  • Philipps-Perron 检验

Philipps-Perron检验基于ADF过程。代码

> PP.test(X)Phillips-Perron Unit Root Testdata:  X
Dickey-Fuller = -2.0116, Truncation lag parameter = 4, p-value = 0.571

另一种可能的替代方案是

> pp.test(X)Phillips-Perron Unit Root Testdata:  X
Dickey-Fuller Z(alpha) = -7.7345, Truncation lag parameter = 4, p-value
= 0.6757
alternative hypothesis: stationary
  • 比较

我不会花更多的时间比较不同的代码,在R中,运行这些测试。我们再花点时间快速比较一下这三种方法。让我们生成一些或多或少具有自相关的自回归过程,以及一些随机游走,让我们看看这些检验是如何执行的:


> for(i in 1:(length(AR)+1)
+ for(s in 1:1000){
+ if(i!=1) X=arima.sim
+ M2[s,i]=(pp.testp.value)
+ M1[s,i]=(kpss.testp.value)
+ M3[s,i]=(adf.testp.value)
+ }

这里,我们要计算检验的p值超过5%的次数,


> plot(AR,P[1,],type="l",col="red",ylim=c(0,1)
> lines(AR,P[2,],type="l",col="blue")
> lines(AR,P[3,],type="l",col="green")

我们可以在这里看到Dickey-Fuller测试的表现有多不稳定,因为我们的自回归过程中有50%(至少)被认为是非平稳的。


这篇关于拓端tecdat|R语言时间序列平稳性几种单位根检验(ADF,KPSS,PP)及比较分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/468346

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

JAVA保证HashMap线程安全的几种方式

《JAVA保证HashMap线程安全的几种方式》HashMap是线程不安全的,这意味着如果多个线程并发地访问和修改同一个HashMap实例,可能会导致数据不一致和其他线程安全问题,本文主要介绍了JAV... 目录1. 使用 Collections.synchronizedMap2. 使用 Concurren

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序