pydantic的基础用法

2023-12-07 16:28
文章标签 基础 用法 pydantic

本文主要是介绍pydantic的基础用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pydantic 基础教程

Pydantic 是一个 Python 库,用于数据解析和校验,它主要基于 Python 类型提示来进行。下面将详细介绍如何使用 Pydantic 来构建数据模型、校验数据以及处理数据。

安装 Pydantic

pip install pydantic

快速开始

创建一个基本模型

在 Pydantic 中,利用类定义数据模型并使用类型注解声明每个字段的数据类型:

from pydantic import BaseModelclass User(BaseModel):id: intname: strage: intsignup_ts: datetime = None

实例化和验证模型

Pydantic 模型将会在创建实例时自动进行数据验证:

from datetime import datetimeuser_data = {'id': '123','name': 'John Doe','age': 30,'signup_ts': '2023-01-01 12:34'
}user = User(**user_data)print(user)
#> id=123 name='John Doe' age=30 signup_ts=datetime.datetime(2023, 1, 1, 12, 34)

在上面的例子中,尽管 idsignup_ts 采用了字符串形式,Pydantic 仍然可以正确识别并将它们转换为适当的类型。这些很显然都是pedantic内部做了类型转换进行处理了。

数据校验

如果提供的数据类型不正确,Pydantic 会抛出异常:

try:User(id=123, name='John Doe', age='thirty')
except ValidationError as e:print(e.json())

这将会输出详细的错误信息,指示哪些字段不符合期望的类型。

模型的其他特性

Pydantic 还支持配置额外的模型设置、复杂的数据类型、嵌套模型等特性。

高级用法

以下是一些 Pydantic 的高级用法:

嵌套模型

你可以定义嵌套模型,以此表达更复杂的数据结构:

from typing import Listclass Item(BaseModel):name: strdescription: str = Noneprice: floattax: float = Noneclass Order(BaseModel):id: intitems: List[Item]

字段校验

可以在模型字段上添加更多的校验逻辑:

from pydantic import Fieldclass Item(BaseModel):name: strdescription: str = Noneprice: float = Field(gt=0)tax: float = None

在上述例子中,price 字段必须是大于0的浮点数。

自定义校验器

可以定义自定义的数据校验器:

from pydantic import validatorclass Item(BaseModel):name: strprice: float@validator('name')def name_must_be_capitalized(cls, v):if not v[0].isupper():raise ValueError('Name must start with a capital letter')return v

自定义校验在我们今后的实际开发中非常有用,搭配上全局异常处理,才是我们实际工作中的用法。这个也会在后面的全局异常处理章节进行讲解。

带有复杂类型的模型

Pydantic 支持许多复杂的类型,如 UnionAnyHttpUrl

from typing import Union
from pydantic import BaseModel, HttpUrlclass MyModel(BaseModel):url: Union[HttpUrl, None]

这允许 url 所接受的值是一个合法的 HTTP URL 或者是 None。

结论

以上便是一个 Pydantic 的基础教程,通过本教程,你可以了解到 Pydantic 的基本概念、如何定义数据模型、进行数据验证和校验等。Pydantic 提供了非常强大和便捷的机制来处理数据验证和类型转换问题,使得用 Python 处理数据变得简单且健壮。

这篇关于pydantic的基础用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466539

相关文章

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Python中的sort()和sorted()用法示例解析

《Python中的sort()和sorted()用法示例解析》本文给大家介绍Python中list.sort()和sorted()的使用区别,详细介绍其参数功能及Timsort排序算法特性,涵盖自适应... 目录一、list.sort()参数说明常用内置函数基本用法示例自定义函数示例lambda表达式示例o

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式