局部线性嵌入(LLE)算法matlab可运行

2023-12-07 11:38

本文主要是介绍局部线性嵌入(LLE)算法matlab可运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要是学习LLE算法,可视化原作者给的例程,具体原理请移步参考。如有侵权,请联系删除。

文章目录

      • 绘图结果
      • 代码
      • 参考

绘图结果

在这里插入图片描述
在这里插入图片描述
以上图片分别为运行代码:scurve_jian.m 和swissroll_jian.m文件得到,具体可以从参考文档中下载。

代码

lle.m

% LLE ALGORITHM (using K nearest neighbors)
%
% [Y] = lle(X,K,dmax)
%
% X = data as D x N matrix (D = dimensionality, N = #points)
% K = number of neighbors
% dmax = max embedding dimensionality
% Y = embedding as dmax x N matrix%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [Y] = lle(X,K,d)[D,N] = size(X);
fprintf(1,'LLE running on %d points in %d dimensions\n',N,D);% STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS 
fprintf(1,'-->Finding %d nearest neighbours.\n',K);X2 = sum(X.^2,1);
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X;[sorted,index] = sort(distance);
neighborhood = index(2:(1+K),:);% STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS
fprintf(1,'-->Solving for reconstruction weights.\n');if(K>D) fprintf(1,'   [note: K>D; regularization will be used]\n'); tol=1e-3; % regularlizer in case constrained fits are ill conditioned
elsetol=0;
endW = zeros(K,N);
for ii=1:Nz = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to originC = z'*z;                                        % local covarianceC = C + eye(K,K)*tol*trace(C);                   % regularlization (K>D)W(:,ii) = C\ones(K,1);                           % solve Cw=1W(:,ii) = W(:,ii)/sum(W(:,ii));                  % enforce sum(w)=1
end;% STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W)
fprintf(1,'-->Computing embedding.\n');% M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements
M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N); 
for ii=1:Nw = W(:,ii);jj = neighborhood(:,ii);M(ii,jj) = M(ii,jj) - w';M(jj,ii) = M(jj,ii) - w;M(jj,jj) = M(jj,jj) + w*w';
end;% CALCULATION OF EMBEDDING
options.disp = 0; 
options.isreal = 1; 
options.issym = 1; 
options.v0=ones(N,1); % 笔者新增的部分
[Y,eigenvals] = eigs(M,d+1,0,options);
Y = Y(:,1:d)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0fprintf(1,'Done.\n');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% other possible regularizers for K>D
%   C = C + tol*diag(diag(C));                       % regularlization
%   C = C + eye(K,K)*tol*trace(C)*K;                 % regularlization

swissroll_jian.m

% SWISS ROLL DATASETN=2000;K=12;d=2; % PLOT TRUE MANIFOLDtt0 = (3*pi/2)*(1+2*[0:0.02:1]); hh = [0:0.125:1]*30;xx = (tt0.*cos(tt0))'*ones(size(hh));yy = ones(size(tt0))'*hh;zz = (tt0.*sin(tt0))'*ones(size(hh));cc = tt0'*ones(size(hh));figuresubplot(1,3,1); surf(xx,yy,zz,cc);% GENERATE SAMPLED DATAtt = (3*pi/2)*(1+2*rand(1,N));  height = 21*rand(1,N);X = [tt.*cos(tt); height; tt.*sin(tt)];% SCATTERPLOT OF SAMPLED DATAsubplot(1,3,2); scatter3(X(1,:),X(2,:),X(3,:),12,tt,'+');% RUN LLE ALGORITHM
Y=lle(X,K,d);% SCATTERPLOT OF EMBEDDINGsubplot(1,3,3); scatter(Y(2,:),Y(1,:),12,tt,'+');

scurve_jian.m

% S-CURVE DATASETN=2000;K=12;d=2; % PLOT TRUE MANIFOLDtt = [-1:0.1:0.5]*pi; uu = fliplr(tt); hh = [0:0.1:1]*5;xx = [cos(tt) -cos(uu)]'*ones(size(hh));yy = ones(size([tt uu]))'*hh;zz = [sin(tt) 2-sin(uu)]'*ones(size(hh));cc = [tt uu]' * ones(size(hh));figure% 显示图形subplot(1,3,1);surf(xx,yy,zz,cc);shading flat% GENERATE SAMPLED DATAangle = pi*(1.5*rand(1,N/2)-1); angle_lr = fliplr(angle);height = 5*rand(1,N);X = [[cos(angle), -cos(angle_lr)]; height; [ sin(angle), 2-sin(angle_lr)]];% SCATTERPLOT OF SAMPLED DATAsubplot(1,3,2);scatter3(X(1,:),X(2,:),X(3,:),12,[angle angle_lr],'+');% RUN LLE ALGORITHM
Y=lle(X,K,d);% SCATTERPLOT OF EMBEDDINGsubplot(1,3,3); cla;scatter(Y(1,:),Y(2,:),12,[angle angle_lr],'+');

参考

[1]https://github.com/ArrowLuo/LLE_Algorithm
[2]https://cs.nyu.edu/~roweis/lle/code.html

这篇关于局部线性嵌入(LLE)算法matlab可运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465720

相关文章

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

eclipse如何运行springboot项目

《eclipse如何运行springboot项目》:本文主要介绍eclipse如何运行springboot项目问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目js录当在eclipse启动spring boot项目时出现问题解决办法1.通过cmd命令行2.在ecl

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.