用Python计算合肥地铁乘车最优乘车路线:暴力方式

2023-12-07 10:50

本文主要是介绍用Python计算合肥地铁乘车最优乘车路线:暴力方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设地铁平均速度60km/h,平均换乘耗时5分钟,列车各站停留时间30秒。已知乘车站及下车站,求最优乘车路线。

也就是最少换乘路线与最短路径之间的选择

首先需要准备的数据:

1.合肥1-3号线站点信息,

根据站名获取纬度,进而获取站点距离

2,构建紧邻图graph。(可以向高德索取数据并整理)

def get_location(keyword,city):#获得经纬度keyword = keyword+"(地铁站)"user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}url='http://restapi.amap.com/v3/place/text?key='+keynum+'&keywords='+keyword+'&types=&city='+city+'&children=1&offset=1&page=1&extensions=all'data = requests.get(url, headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['pois'][0]['location'].split(',')return result[0],result[1]def compute_distance(longitude1,latitude1,longitude2,latitude2):#计算两个地铁站的距离user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}#url='http://restapi.amap.com/v3/distance?key='+keynum+'&origins='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&type=3'两点距离url = 'http://restapi.amap.com/v3/direction/transit/integrated?key='+keynum+'&origin='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&city=合肥&cityd=合肥&strategy=0&nightflag=0&date=2014-3-19&time=22:34'data=requests.get(url,headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['route']['distance']return resultdef get_graph():print('正在创建pickle文件...')data=pd.read_excel('./subway.xlsx')#创建点之间的距离graph=defaultdict(dict)for i in range(data.shape[0]):site1=data.iloc[i]['line']if i<data.shape[0]-1:#print(site2)site2=data.iloc[i+1]['line']#如果是共一条线if site1==site2:longitude1,latitude1=data.iloc[i]['longitude'],data.iloc[i]['latitude']longitude2,latitude2=data.iloc[i+1]['longitude'],data.iloc[i+1]['latitude']name1=data.iloc[i]['name']name2=data.iloc[i+1]['name']distance=compute_distance(longitude1,latitude1,longitude2,latitude2)graph[name1][name2]={'line':site1,'distance':distance}graph[name2][name1]={'line':site1,'distance':distance}output=open('graph.pkl','wb')pickle.dump(graph,output)

暴力的解决问题:

1,遍历出所有路径,以及换乘次数,换乘线路,路径距离

2,找到最短路径(也可能是最短距离),和最少换乘路径进行比较

import pickledef find_allPath(graph,start,end,path=[]):path = path +[start]if start == end:return [path]#print(path)paths = [] #存储所有路径    for node in graph[start]:if node not in path:newpaths = find_allPath(graph,node,end,path) for newpath in newpaths:paths.append(newpath)return pathsdef compare_allPath(start,end,path=[]):paths =find_allPath(graph,start,end,path=[])line_num=[]tr_=[]distances=[]for path in paths:line,distance,tr = [],[],[]for i in range(len(path)-1):li=graph[path[i]][path[i+1]]['line']if len(line)==0:line.append(str(li))elif str(li) != line[-1]:line.append(str(li))tr.append(path[i])distance.append(graph[path[i]][path[i+1]]['distance'])line_num.append(line)tr_.append(tr)distances.append(sum([int(d) for d in distance]))tr_num = [len(i) for i in tr_]if distances.index(min(distances)) != tr_num.index(min(tr_num)):#计算最短距离与最少换成的耗时差异#最短路径与最少换乘的距离差距path_dis_diff = distances[distances.index(min(distances))]-distances[tr_num.index(min(tr_num))]#过站数量差异:station_diff = len(path[distances.index(min(distances))])-len(path[tr_num.index(min(tr_num))])#最短路径与最少换乘的换乘距离差距path_tr_num_diff = tr_num[distances.index(min(distances))]-tr_num[tr_num.index(min(tr_num))]#如果距离耗时与换乘时间做比较:假设地铁速度60km/h,换乘耗时5分钟if abs(station_diff)*0.5+abs(path_dis_diff)/1000<path_tr_num_diff*5:path,linen,tr=paths[tr_num.index(min(tr_num))],line_num[tr_num.index(min(tr_num))],tr_[tr_num.index(min(tr_num))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]if len(line)>1:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('换乘站是{}'.format(','.join(tr)))print('路线规划为:','-->'.join(path))else:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('路线规划为:','-->'.join(path)) return path,linen,trif __name__ == '__main__':global graphfile=open('graph.pkl','rb')graph=pickle.load(file)#compare_allPath('职教城','幸福坝')#compare_allPath('洪岗','包公园')compare_allPath('职教城','幸福坝')

 

该方法是最LOW的方法,下篇将用dijkstra解决最短路径问题

这篇关于用Python计算合肥地铁乘车最优乘车路线:暴力方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465580

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

idea设置快捷键风格方式

《idea设置快捷键风格方式》在IntelliJIDEA中设置快捷键风格,打开IDEA,进入设置页面,选择Keymap,从Keymaps下拉列表中选择或复制想要的快捷键风格,点击Apply和OK即可使... 目录idea设www.chinasem.cn置快捷键风格按照以下步骤进行总结idea设置快捷键pyth

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

SpringBoot返回文件让前端下载的几种方式

《SpringBoot返回文件让前端下载的几种方式》文章介绍了开发中文件下载的两种常见解决方案,并详细描述了通过后端进行下载的原理和步骤,包括一次性读取到内存和分块写入响应输出流两种方法,此外,还提供... 目录01 背景02 一次性读取到内存,通过响应输出流输出到前端02 将文件流通过循环写入到响应输出流

java敏感词过滤的实现方式

《java敏感词过滤的实现方式》文章描述了如何搭建敏感词过滤系统来防御用户生成内容中的违规、广告或恶意言论,包括引入依赖、定义敏感词类、非敏感词类、替换词类和工具类等步骤,并指出资源文件应放在src/... 目录1.引入依赖2.定义自定义敏感词类3.定义自定义非敏感类4.定义自定义替换词类5.最后定义工具类