用Python计算合肥地铁乘车最优乘车路线:暴力方式

2023-12-07 10:50

本文主要是介绍用Python计算合肥地铁乘车最优乘车路线:暴力方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设地铁平均速度60km/h,平均换乘耗时5分钟,列车各站停留时间30秒。已知乘车站及下车站,求最优乘车路线。

也就是最少换乘路线与最短路径之间的选择

首先需要准备的数据:

1.合肥1-3号线站点信息,

根据站名获取纬度,进而获取站点距离

2,构建紧邻图graph。(可以向高德索取数据并整理)

def get_location(keyword,city):#获得经纬度keyword = keyword+"(地铁站)"user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}url='http://restapi.amap.com/v3/place/text?key='+keynum+'&keywords='+keyword+'&types=&city='+city+'&children=1&offset=1&page=1&extensions=all'data = requests.get(url, headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['pois'][0]['location'].split(',')return result[0],result[1]def compute_distance(longitude1,latitude1,longitude2,latitude2):#计算两个地铁站的距离user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}#url='http://restapi.amap.com/v3/distance?key='+keynum+'&origins='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&type=3'两点距离url = 'http://restapi.amap.com/v3/direction/transit/integrated?key='+keynum+'&origin='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&city=合肥&cityd=合肥&strategy=0&nightflag=0&date=2014-3-19&time=22:34'data=requests.get(url,headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['route']['distance']return resultdef get_graph():print('正在创建pickle文件...')data=pd.read_excel('./subway.xlsx')#创建点之间的距离graph=defaultdict(dict)for i in range(data.shape[0]):site1=data.iloc[i]['line']if i<data.shape[0]-1:#print(site2)site2=data.iloc[i+1]['line']#如果是共一条线if site1==site2:longitude1,latitude1=data.iloc[i]['longitude'],data.iloc[i]['latitude']longitude2,latitude2=data.iloc[i+1]['longitude'],data.iloc[i+1]['latitude']name1=data.iloc[i]['name']name2=data.iloc[i+1]['name']distance=compute_distance(longitude1,latitude1,longitude2,latitude2)graph[name1][name2]={'line':site1,'distance':distance}graph[name2][name1]={'line':site1,'distance':distance}output=open('graph.pkl','wb')pickle.dump(graph,output)

暴力的解决问题:

1,遍历出所有路径,以及换乘次数,换乘线路,路径距离

2,找到最短路径(也可能是最短距离),和最少换乘路径进行比较

import pickledef find_allPath(graph,start,end,path=[]):path = path +[start]if start == end:return [path]#print(path)paths = [] #存储所有路径    for node in graph[start]:if node not in path:newpaths = find_allPath(graph,node,end,path) for newpath in newpaths:paths.append(newpath)return pathsdef compare_allPath(start,end,path=[]):paths =find_allPath(graph,start,end,path=[])line_num=[]tr_=[]distances=[]for path in paths:line,distance,tr = [],[],[]for i in range(len(path)-1):li=graph[path[i]][path[i+1]]['line']if len(line)==0:line.append(str(li))elif str(li) != line[-1]:line.append(str(li))tr.append(path[i])distance.append(graph[path[i]][path[i+1]]['distance'])line_num.append(line)tr_.append(tr)distances.append(sum([int(d) for d in distance]))tr_num = [len(i) for i in tr_]if distances.index(min(distances)) != tr_num.index(min(tr_num)):#计算最短距离与最少换成的耗时差异#最短路径与最少换乘的距离差距path_dis_diff = distances[distances.index(min(distances))]-distances[tr_num.index(min(tr_num))]#过站数量差异:station_diff = len(path[distances.index(min(distances))])-len(path[tr_num.index(min(tr_num))])#最短路径与最少换乘的换乘距离差距path_tr_num_diff = tr_num[distances.index(min(distances))]-tr_num[tr_num.index(min(tr_num))]#如果距离耗时与换乘时间做比较:假设地铁速度60km/h,换乘耗时5分钟if abs(station_diff)*0.5+abs(path_dis_diff)/1000<path_tr_num_diff*5:path,linen,tr=paths[tr_num.index(min(tr_num))],line_num[tr_num.index(min(tr_num))],tr_[tr_num.index(min(tr_num))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]if len(line)>1:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('换乘站是{}'.format(','.join(tr)))print('路线规划为:','-->'.join(path))else:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('路线规划为:','-->'.join(path)) return path,linen,trif __name__ == '__main__':global graphfile=open('graph.pkl','rb')graph=pickle.load(file)#compare_allPath('职教城','幸福坝')#compare_allPath('洪岗','包公园')compare_allPath('职教城','幸福坝')

 

该方法是最LOW的方法,下篇将用dijkstra解决最短路径问题

这篇关于用Python计算合肥地铁乘车最优乘车路线:暴力方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465580

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright