sklearn随机森林 测试 路面点云分类

2023-12-07 10:04

本文主要是介绍sklearn随机森林 测试 路面点云分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、特征5个坐标

坐标-特征-类别
训练数据

二、模型训练

记录分享给有需要的人,代码质量勿喷

import numpy as np
import pandas as pd
import joblib#region 1 读取数据
dir = 'D:\\py\\RandomForest\\'
filename1 = 'trainRS'
filename2 = '.csv'
path = dir+filename1+filename2rawdata = pd.read_csv(path, encoding='gbk')print('=== 1 读取数据')
#endregion#region 2 构造数据集
x = rawdata.drop(columns=['x','y','z','Classification'])
y = rawdata['Classification']#训练集6:验证集4
from sklearn.model_selection import train_test_split
indices = np.arange(x.shape[0]) #索引
x_train,x_test,y_train, y_test, indices_train, indices_test = train_test_split(x,y,indices,test_size=0.4,random_state=0)print('=== 2 构造训练集和验证集')
#endregion#region 3 Random Forest 模型训练与保存------------------------最耗时间
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier() #随机森林实例化 默认参数
rfc.fit(x_train, y_train) #模型训练# 保存模型
joblib.dump(rfc,"modelRS.m")
# rfc2 = joblib.load("modelRS.m") #调用print('=== 3 Random Forest 模型训练与保存')
#endregion#region 4 模型评分与验证结果
score_rfc = rfc.score(x_test,y_test)
print('score_rfc =',score_rfc)#验证集预测
yPre = rfc.predict(x_test)print('=== 4 模型评分与验证集预测')
#endregion#region 5 查看特征的重要性占比
feature_importance = rfc.feature_importances_
cols = rawdata.columnsfi = pd.DataFrame({'特征':np.array(cols)[3:-1], '重要性占比':feature_importance}).sort_values(by='重要性占比',axis=0, ascending=False)print('=== 5 查看特征列的重要性')
print(fi)
#endregion#region 6 输出验证集结果
test_data = rawdata.loc[indices_test]
test_data_np = test_data.to_numpy()#合并原始数据和预测结果
test_data_pre = np.hstack((test_data_np, yPre.reshape(-1, 1))) #水平(沿着列方向)合并数组output_file = filename1 + "_ValidateResult.txt"
np.savetxt(output_file, test_data_pre, fmt="%f", delimiter="\t")print('=== 6 输出验证集结果')
#endregion

三、验证集结果

验证集98%,hhhhhhhhh

特征占比有点超乎想象

四、测试

记录分享给有需要的人,代码质量勿喷

import numpy as np
import pandas as pd
import joblib#region 1 读取数据
dir = 'D:\\py\\RandomForest\\'
filename1 = 'testRS2'
filename2 = '.csv'
path = dir+filename1+filename2
data = pd.read_csv(path,encoding='gbk')test = data.drop(columns=['x','y','z','Classification'])print('=== 1 读取数据')
#endregion#region 2 调用模型预测
rfc = joblib.load("modelRS.m") #调用
pre = rfc.predict(test)print('=== 2 调用模型预测')
#endregion#region 3 输出结果
data_np = data.to_numpy()
data_pre = np.hstack((data_np, pre.reshape(-1, 1))) #水平(沿着列方向)合并数组output_file = filename1 + "_PreResult.txt"
np.savetxt(output_file, data_pre, fmt="%f", delimiter="\t")print('=== 3 输出结果')
#endregion

还是有效果的

这篇关于sklearn随机森林 测试 路面点云分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465446

相关文章

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程

《SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程》本文详细介绍了如何在虚拟机和宝塔面板中安装RabbitMQ,并使用Java代码实现消息的发送和接收,通过异步通讯,可以优化... 目录一、RabbitMQ安装二、启动RabbitMQ三、javascript编写Java代码1、引入

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep