AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统

本文主要是介绍AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智慧农业随着数字化信息化浪潮的演变有了新的定义,在前面的系列博文中,我们从一些现实世界里面的所见所想所感进行了很多对应的实践,感兴趣的话可以自行移步阅读即可:

《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》 

《轻量级目标检测模型实战——杂草检测》

《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统》

《基于yolov5的农作物田间杂草检测识别系统》

自动化的激光除草,是未来大面积农业规划化作物种植生产过程中非常有效的技术手段,本文的核心思想就是基于YOLOv6模型来开发构建智能检测识别模型,首先看下实例效果:

这里是基于实验性的想法做的实践项目,数据集由自主构建,主要包含:作物和杂草两类目标对象,在后续的实际开发中,可以根据实际的业务需求来不断地增加和细化对应类别下的数据规模。

简单看下数据集:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False# Classes
nc: 2  # number of classes# class names
names: ['crop', 'weed']

默认我先选择的是yolov6n系列的模型,基于finetune来进行模型的开发:

# YOLOv6s model
model = dict(type='YOLOv6n',pretrained='weights/yolov6n.pt',depth_multiple=0.33,width_multiple=0.25,backbone=dict(type='EfficientRep',num_repeats=[1, 6, 12, 18, 6],out_channels=[64, 128, 256, 512, 1024],fuse_P2=True,cspsppf=True,),neck=dict(type='RepBiFPANNeck',num_repeats=[12, 12, 12, 12],out_channels=[256, 128, 128, 256, 256, 512],),head=dict(type='EffiDeHead',in_channels=[128, 256, 512],num_layers=3,begin_indices=24,anchors=3,anchors_init=[[10,13, 19,19, 33,23],[30,61, 59,59, 59,119],[116,90, 185,185, 373,326]],out_indices=[17, 20, 23],strides=[8, 16, 32],atss_warmup_epoch=0,iou_type='siou',use_dfl=False, # set to True if you want to further train with distillationreg_max=0, # set to 16 if you want to further train with distillationdistill_weight={'class': 1.0,'dfl': 1.0,},)
)solver = dict(optim='SGD',lr_scheduler='Cosine',lr0=0.0032,lrf=0.12,momentum=0.843,weight_decay=0.00036,warmup_epochs=2.0,warmup_momentum=0.5,warmup_bias_lr=0.05
)data_aug = dict(hsv_h=0.0138,hsv_s=0.664,hsv_v=0.464,degrees=0.373,translate=0.245,scale=0.898,shear=0.602,flipud=0.00856,fliplr=0.5,mosaic=1.0,mixup=0.243,
)

终端执行:

python tools/train.py --batch-size 16 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2

即可启动训练。

日志输出如下所示:

等待训练完成之后,我们来整体看下结果详情:

Training completed in 1.585 hours.
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.21s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=2.20s).
Accumulating evaluation results...
DONE (t=0.31s).Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.657Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.924Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.749Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.177Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.303Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.717Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.527Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.714Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.758Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.391Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.653Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.798

args详情如下:

data_path: data/self.yaml
conf_file: configs/yolov6n_finetune.py
img_size: 640
rect: false
batch_size: 16
epochs: 100
workers: 2
device: '0'
eval_interval: 20
eval_final_only: false
heavy_eval_range: 50
check_images: false
check_labels: false
output_dir: ./runs/train
name: yolov6n
dist_url: env://
gpu_count: 0
local_rank: -1
resume: false
write_trainbatch_tb: false
stop_aug_last_n_epoch: 15
save_ckpt_on_last_n_epoch: -1
distill: false
distill_feat: false
quant: false
calib: false
teacher_model_path: null
temperature: 20
fuse_ab: true
bs_per_gpu: 32
specific_shape: false
height: null
width: null
cache_ram: false
rank: -1
world_size: 1
save_dir: runs/train/yolov6n

结果文件如下所示:

可视化推理实例如下所示:

感兴趣的话也都可以自行尝试一下!

这篇关于AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/461944

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使