【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上)

2023-12-06 10:01

本文主要是介绍【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 机器学习中的Helloworld _鸾尾花分类项目

2 导入项目所需类库和鸾尾花数据集

2.1 导入类库

2.2 scikit-learn 库介绍 

(1)主要特点:

(2)常见的子模块:

3 导入鸾尾花数据集

3.1 概述数据

3.2 数据维度

3.3 查看数据自身

3.4 统计描述数据

3.5 数据分类分布

4 数据可视化

4.1 单变量图表

4.2 多变量图表


1 机器学习中的Helloworld _鸾尾花分类项目

         鸢尾花分类是机器学习领域中的一个经典示例,也是一个适用于入门级学习者的 "Hello World" 项目。这个项目使用鸢尾花数据集,其中包含了三个不同种类的鸢尾花:Setosa、Versicolor 和 Virginica。这三个亚属分别属于鸢尾属(Iris)中的不同物种。

2 导入项目所需类库和鸾尾花数据集

2.1 导入类库

# 导入鸢尾花数据集
from sklearn import datasets# 导入数据处理和分割工具
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 导入分类器模型
from sklearn.neighbors import KNeighborsClassifier# 导入性能评估指标
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 导入可视化工具
import matplotlib.pyplot as plt
import seaborn as sns

这段代码导入了以下类库和模块:

  • datasets:从 scikit-learn 中导入数据集。
  • train_test_split:用于将数据集分割成训练集和测试集的模块。
  • StandardScaler:用于数据标准化的模块,对特征进行缩放。
  • KNeighborsClassifier:K近邻分类器,用于鸢尾花分类任务。
  • accuracy_scoreclassification_reportconfusion_matrix:用于评估分类器性能的模块。
  • matplotlib.pyplotseaborn:用于可视化数据和评估结果的模块。

请确保在运行这段代码之前已经安装了这些库,可以使用以下命令安装:

pip install scikit-learn matplotlib seaborn

导入这些类库后,你就可以在鸢尾花分类项目中使用它们进行数据处理、建模和评估。

2.2 scikit-learn 库介绍 

   scikit-learn 是一个用于机器学习的 Python 库,提供了丰富的工具和模型,用于数据挖掘和数据分析。它建立在 NumPy、SciPy 和 Matplotlib 基础之上,是机器学习领域中最受欢迎的库之一。

(1)主要特点:

  1. 简单而高效: scikit-learn 提供了简单且一致的接口,易于学习和使用。它支持多种机器学习任务,包括分类、回归、聚类、降维等。

  2. 丰富的文档: 该库具有详细的文档,包括用户指南、教程和示例,使用户能够更好地理解和使用不同的算法和工具。

  3. 广泛的算法: scikit-learn 包含了许多经典和先进的机器学习算法,如支持向量机(SVM)、随机森林、K均值聚类等。

  4. 数据预处理: 提供了丰富的数据预处理工具,包括数据标准化、特征选择、缺失值处理等。

  5. 模型评估: 支持模型性能评估的工具,包括交叉验证、网格搜索调参、性能度量等。

  6. 可扩展性: 允许用户通过创建自定义转换器和评估器来扩展功能,也支持集成其他库。

(2)常见的子模块:

  • datasets 模块: 包含一些常用的数据集,如鸢尾花数据集、手写数字数据集等。

  • model_selection 模块: 提供了用于交叉验证、超参数调优等的工具。

  • preprocessing 模块: 包含数据预处理的工具,如标准化、缩放、编码等。

  • metrics 模块: 包含模型评估的指标,如准确率、精确度、召回率等。

  • ensemble 模块: 包含集成学习方法,如随机森林、梯度提升树等。

  • neighbors 模块: 包含近邻算法,如 K 近邻分类器。

  • svm 模块: 包含支持向量机算法。

  • cluster 模块: 包含聚类算法,如 K 均值聚类、层次聚类等。

  • decomposition 模块: 包含降维算法,如主成分分析(PCA)等。

3 导入鸾尾花数据集

3.1 概述数据

        鸢尾花数据集是由统计学家和生物学家Ronald A. Fisher于1936年创建的,用于展示多变量统计方法。该数据集包含了三个不同种类的鸢尾花(Setosa、Versicolor 和 Virginica)的测量数据。

导入数据集

from sklearn import datasets# 导入鸢尾花数据集
iris = datasets.load_iris()# 获取特征数据
X = iris.data# 获取目标标签
y = iris.target

你可以在 UCI Machine Learning Repository 网站上找到鸢尾花数据集的信息和下载链接:Iris Data Seticon-default.png?t=N7T8https://archive.ics.uci.edu/ml/datasets/iris然后,你可以下载数据集并使用适当的工具进行导入和处理。

3.2 数据维度

查看数据维度

from sklearn import datasets
import pandas as pd# 导入鸢尾花数据集
iris = datasets.load_iris()# 获取特征数据
X = iris.data# 获取目标标签
y = iris.target# 创建数据框
df = pd.DataFrame(data=X, columns=iris.feature_names)
df['target'] = y# 查看数据集的维度
print(f"数据集维度:{df.shape}")

 

数据集的特征包括:

  • 萼片长度(Sepal Length)
  • 萼片宽度(Sepal Width)
  • 花瓣长度(Petal Length)
  • 花瓣宽度(Petal Width)

每个特征都以厘米为单位进行测量。

3.3 查看数据自身

首先,让我们看一下数据集的一些样本和它们的标签:

from sklearn import datasets
import pandas as pdiris = datasets.load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target# 打印数据集的前几行
print(df.head())

输出: 

3.4 统计描述数据

我们可以使用 pandas 库的 describe() 方法获取关于数据的统计描述信息:

from sklearn import datasets
import pandas as pdiris = datasets.load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target# 打印数据集的前几行
print(df.head())
# 统计描述
print(df.describe())

输出: 

3.5 数据分类分布

查看鸢尾花数据集中每个类别的分布:

from sklearn import datasets
import pandas as pdimport matplotlib.pyplot as plt
import seaborn as snsiris = datasets.load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target# # 打印数据集的前几行
# print(df.head())
# # 统计描述
# print(df.describe())# 绘制数据集中每个类别的计数分布
sns.countplot(x='target', data=df)
plt.title('Class Distribution in Iris Dataset')
plt.show()

 

以上步骤可以让你更好地了解鸢尾花数据集,包括特征的维度、样本的分布情况等。这些信息对于进行机器学习任务之前的数据探索和理解非常重要。

4 数据可视化

        通过对数据集的审查,对数据有一个基本的了解。接下来将通过图标来进一步查看数据特征的分布情况和数据不同特征之间的相互关系。

        使用单变量图表可以更好地理解每一个特征属性。

        多变量图表用于理解不同特征属性之间的关系。

4.1 单变量图表

from sklearn import datasets
import pandas as pd# 导入鸢尾花数据集
iris = datasets.load_iris()# 获取特征数据
X = iris.data# 获取目标标签
y = iris.target# 创建数据框
df = pd.DataFrame(data=X, columns=iris.feature_names)
df['target'] = y# 查看数据集的维度
print(f"数据集维度:{df.shape}")import matplotlib.pyplot as plt
import seaborn as sns# 设置图形样式
sns.set(style="whitegrid")# 创建单变量图表
plt.figure(figsize=(12, 6))# 绘制花萼长度的直方图
plt.subplot(2, 2, 1)
sns.histplot(df['sepal length (cm)'], kde=True, color='skyblue')
plt.title('Distribution of Sepal Length')# 绘制花萼宽度的直方图
plt.subplot(2, 2, 2)
sns.histplot(df['sepal width (cm)'], kde=True, color='salmon')
plt.title('Distribution of Sepal Width')# 绘制花瓣长度的直方图
plt.subplot(2, 2, 3)
sns.histplot(df['petal length (cm)'], kde=True, color='green')
plt.title('Distribution of Petal Length')# 绘制花瓣宽度的直方图
plt.subplot(2, 2, 4)
sns.histplot(df['petal width (cm)'], kde=True, color='orange')
plt.title('Distribution of Petal Width')plt.tight_layout()
plt.show()

4.2 多变量图表

from sklearn import datasets
import pandas as pd# 导入鸢尾花数据集
iris = datasets.load_iris()# 获取特征数据
X = iris.data# 获取目标标签
y = iris.target# 创建数据框
df = pd.DataFrame(data=X, columns=iris.feature_names)
df['target'] = y# 查看数据集的维度
print(f"数据集维度:{df.shape}")import matplotlib.pyplot as plt
import seaborn as sns# 设置图形样式
sns.set(style="whitegrid")# 创建多变量图表
plt.figure(figsize=(12, 6))# 绘制花萼长度和宽度的散点图
plt.subplot(1, 2, 1)
sns.scatterplot(x='sepal length (cm)', y='sepal width (cm)', hue='target', data=df, palette='viridis')
plt.title('Scatter Plot of Sepal Length vs. Sepal Width')# 绘制花瓣长度和宽度的散点图
plt.subplot(1, 2, 2)
sns.scatterplot(x='petal length (cm)', y='petal width (cm)', hue='target', data=df, palette='viridis')
plt.title('Scatter Plot of Petal Length vs. Petal Width')plt.tight_layout()
plt.show()

        这些代码使用了 seaborn 库,通过直方图展示了花萼和花瓣的长度和宽度的分布情况,并使用散点图展示了花萼长度和宽度以及花瓣长度和宽度之间的关系。这些可视化图表可以帮助你更好地了解数据集的特征和类别之间的差异。 

这篇关于【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/461434

相关文章

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结