Java 多线程之 StampedLock(读写锁/乐观读锁/共享锁/排他锁)

2023-12-06 01:52

本文主要是介绍Java 多线程之 StampedLock(读写锁/乐观读锁/共享锁/排他锁),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、概述
    • 二、使用方法
    • 三、测试示例

一、概述

  • StampedLock是Java 8引入的一种读写锁的实现,它提供了一种乐观的读锁(Optimistic Read Lock)和悲观的读锁(Pessimistic Read Lock),和写锁(Write Lock),以及对读-写冲突的解决方案。StampedLock的设计目标是在读多写少的场景下提供更高的并发性能。与传统的读写锁相比,StampedLock更加灵活和高效。

  • StampedLock 的主要功能如下:

    • 乐观读取(Optimistic Reading):通过调用 tryOptimisticRead() 方法获取一个乐观读锁的标记(stamp),该标记可以用于后续的读操作。乐观读锁不会阻塞写操作,即使其他线程在你获取锁之后进行了写操作,你的读操作仍然可以继续进行。但需要注意的是,乐观读锁并不能保证数据的一致性,因此在使用乐观读锁后,需要进一步验证数据的有效性。

    • 悲观读锁(Pessimistic Read Lock):通过调用 readLock() 方法获取一个悲观读锁,该锁会阻塞其他线程的写操作,保证了数据的一致性。在获取悲观读锁后,可以执行读操作,并且允许其他线程同时获取乐观读锁。

    • 写锁(Write Lock):通过调用 writeLock() 方法获取一个写锁,该锁会阻塞其他线程的读和写操作,保证了数据的一致性。在获取写锁后,可以执行写操作,期间不允许其他线程获取读锁或写锁。

    • 写锁和读锁的分离:在传统的读写锁中,写锁的获取会阻塞其他线程的读取和写入操作。而StampedLock将读锁和写锁分离,使得读锁之间不会互相阻塞,提高了并发读取的效率。

    • 读写冲突解决:StampedLock使用类似于版本号的机制(称为"stamp")来解决读写冲突。每次获取读锁或写锁时会返回一个stamp,可以用来检查共享数据是否被其他线程修改过。

    • 支持条件等待:StampedLock提供了 Condition 接口的条件等待方法,可以使用条件等待来实现更复杂的线程协调。

  • 前面讲过 ReentrantReadWriteLock 使用方法,与之相比,StampedLock 在某些情况下可以提供更高的性能,但并不是在所有情况下都表现更好。StampedLock 的优势主要表现在支持乐观读取机制条件等待。所以在写操作频繁而读操作较少存在大量的锁竞争的情况下,直接使用悲观读锁,性能跟ReentrantReadWriteLock是相差不大的。

  • 注意:乐观读锁其实没有加锁,就是尝试去读,只要数据没有发生变化,读取的值就有效;否则重新再读一次。乐观读锁就是按这个逻辑执行。

二、使用方法

  • 使用StampedLock的基本步骤如下:

    1. 创建StampedLock对象:通过 StampedLock lock = new StampedLock(); 语句创建StampedLock对象。

    2. 读取操作:使用 lock.tryOptimisticRead() 方法获取一个乐观读锁的 stamp,并读取共享数据。在读取过程中,需要使用lock.validate(stamp) 方法验证读取期间共享数据是否被修改过,如果没有修改再使用悲观读锁,而不是直接使用悲观读锁。

    3. 写入操作:使用 lock.writeLock() 方法获取写锁,并进行写入操作。

    4. 读写锁的转换:可以使用 lock.tryConvertToReadLock(stamp) 或 lock.tryConvertToWriteLock(stamp) 方法将乐观读锁转换为悲观读锁或写锁。这样可以避免释放乐观读锁后再重新获取悲观读锁或写锁。

    import java.util.concurrent.locks.StampedLock;public class StampedLockExample {private Object SharedData;private final StampedLock lock = new StampedLock();public void write(Object obj) {//获取写锁long stamp = lock.writeLock();try {// 执行写业务逻辑,如下SharedData = obj;} finally {// 释放写锁lock.unlockWrite(stamp);}}// 完全使用乐观读锁public Object read1() {while(true){Object result = null;// 获取乐观读锁long stamp = lock.tryOptimisticRead(); // 执行读业务逻辑,如下result = SharedData;// 验证共享数据是否被修改,如果没有被修改过,则直接返回。否则重新读if (lock.validate(stamp)) {return result;}}}// 使用乐观读锁 + 非观读锁public Object read2() {Object result = null;// 获取乐观读锁long stamp = lock.tryOptimisticRead(); // 执行读业务逻辑(这里先读一次),如下result = SharedData;// 验证共享数据是否被修改if (lock.validate(stamp)) {// 如果共享数据没有被修改过,则直接使用return result;}// 获取悲观读锁stamp = lock.readLock();try {// 执行读业务逻辑,重新读result = SharedData;} finally {// 释放写锁lock.unlockRead(stamp);}return result;}
    }
    

三、测试示例

  • 在下面示例中,创建了一个 StampedLockExample 类,他包括一个写方法,一个乐观读方法和一个乐观结合悲观的读方法。在 main 方法使用1个线程调用写方法,5个线程调用乐观锁读方法,5个线程调用乐观锁加悲观乐的读方法。两个读方法在实际应用中任选一种即可。

    使用StampedLock时需要注意以下几点:

    • 使用乐观读取时,需要在读取操作的开始和结束处进行验证,以确保读取期间共享数据没有被修改。
    • 第一种读取方法是:验证后如果修改,则重新读一次再验证,直到没有被修改则返回
    • 第二种读取方法是:在使用乐观读取之后,如果发现共享数据被修改,尝试转换为悲观读锁或写锁,以避免重新获取锁。
    • 写锁的获取是独占的,会阻塞其他读取和写入操作。因此,在使用写锁时需要注意避免写锁的持有时间过长,避免对性能造成影响。
    package top.yiqifu.study.p004_thread;import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.locks.StampedLock;public class Test081_StampedLock {public static void main(String[] args) {StampedLockExample stampedLockExample = new StampedLockExample();List<Thread> threads = new ArrayList();for(int i = 1; i<= 1; i++){Thread t = new Thread(()->{for(int j=0; j< 100000; j++){try {String text = Thread.currentThread().getName()+" 共享数据 "+ j;stampedLockExample.write(text);System.out.println(text);Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}});t.setName("写线程"+i);threads.add(t);}for(int i = 1; i<= 5; i++){Thread t = new Thread(()->{for(int j=0; j< 100000; j++){try {String result = stampedLockExample.read1();System.out.println(Thread.currentThread().getName()+" 读取 "+result);Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}}});t.setName("乐观读线程"+i);threads.add(t);}for(int i = 1; i<= 5; i++){Thread t = new Thread(()->{for(int j=0; j< 100000; j++){try {String result = stampedLockExample.read1();System.out.println(Thread.currentThread().getName()+" 读取 "+result);Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}}});t.setName("乐+悲读线程"+i);threads.add(t);}for(Thread t : threads){t.start();}for(Thread t : threads){try {t.join();} catch (InterruptedException e) {e.printStackTrace();}}}public static class StampedLockExample {private String SharedData;private final StampedLock lock = new StampedLock();public void write(String text) {long stamp = lock.writeLock();try {SharedData = text;} finally {lock.unlockWrite(stamp);}}// 完全使用乐观读锁public String read1() {while(true){String result = null;long stamp = lock.tryOptimisticRead();result = SharedData;if (lock.validate(stamp)) {return result;}}}// 使用乐观读锁 + 非观读锁public String read2() {String result = null;long stamp = lock.tryOptimisticRead();result = SharedData;if (lock.validate(stamp)) {return result;}stamp = lock.readLock();try {result = SharedData;} finally {lock.unlockRead(stamp);}return result;}}
    }

这篇关于Java 多线程之 StampedLock(读写锁/乐观读锁/共享锁/排他锁)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459950

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配