pku2480(欧拉函数的应用,推公式,积性函数)

2023-12-05 23:48

本文主要是介绍pku2480(欧拉函数的应用,推公式,积性函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://162.105.81.212/JudgeOnline/problem?id=2480

题意:给定N(int)  求 ∑gcd(i,N) 1<=i<=N。

分析:一看这题的数据就知道不能暴力的,要用到欧拉函数分解才行的,只是自己的数论还不成熟,想了好久都没有解法;

最后看了牛人的解题报告才弄明白的;

此题解法:对于gcd(M,N)=i 有Ci个M满足此式 答案便是∑(Ci*i)gcd(M,N)=i  <=> gcd(M/i,N/i)=1 而求gcd(M/i,N/i)=1 有多少个M/i满足 这便是欧拉函数Phi()的定义所以就转化为了求Phi(N/i)枚举每个 M|N  求出Phi(N/i)  答案便是 ∑(Phi(N/i)*i)那么如何枚举每个  M|N 呢?

很简单 枚举1到sqrt(N)的所有整数,所有的约数便是 i|N 和 (N/i)|N。

 

还有别的解法是积性函数,因子分解;

 

(1)因为有性质

 gcd(i,m /times n)=gcd(i,m) /times gcd(i,n) 当m /perp n

所以gcd是积性函数

因为积性函数的和函数也是积性函数(《初等数论及其应用》P182),所以所求函数

F(N)=/sum_{i=1}^{N}gcd(i,N)是积性函数

问题简化到素数阶段,须求F(p^k),此时用到欧拉公式.因为有F(N)=/sum _{d|N}d/cdot /varphi (/frac{N}{d})

(易见因为/varphi (/frac{N}{d})代表的是从1到N中和N最大公约数gcd为d的数的个数)

所以F(p^k)=/sum _{i=0}^k p^i/cdot /varphi (p^{k-i}),又因为/varphi (p^k)=p^k-p^{k-1}则可求出。

(2)

 

容易证明gcd(i,n)是积性函数,即: 如果n = m1*m2 且gcd(i,m1*m2) = gcd(i,m1)*gcd(i,m2). 然后根据具体数学上的结论: 积性函数的和也是积性的,所以如果我们设所求答案是f(n) 则: f(n) = f(m1)*(m2) 其中,m1*m2 = n 且m1,m2互质!经过因子分解,那种只要求到f(p^k)就可以利用积性把所有结果相乘得到最后答案。

还要一个结论: f(n) = sum(p * phi(n/p))  其中p是n的因子,phi(n/p) 是从1到n有多少个数和n的gcd是p,  这个结论比较好证明的。

        所以求f(p^k)转化成求phi(p^i) i =0....k;  而根据公式phi(p^i) = (p-1)*p^(i-1)可以求出,这样整个问题就解决了。  具体算法过程要先把1到50000的素数求出来便于分解因子。

 

 

这篇关于pku2480(欧拉函数的应用,推公式,积性函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459612

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.