DenseNet分类网络改进--亲测有效

2023-12-05 15:12

本文主要是介绍DenseNet分类网络改进--亲测有效,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近,我在做多分类问题。在针对基模型的选择中,我使用了DenseNet作为基本模型。我在阅读论文时,遇到了一种改进方式:
在这里插入图片描述

如上图所示,在全连接层之前引入SPP模块:
在这里插入图片描述
代码如下:

SPP模块代码:

class SpatialPyramidPooling(nn.Module):def __init__(self, pool_sizes: List[int], in_channels: int):super(SpatialPyramidPooling, self).__init__()self.pool_sizes = pool_sizesself.in_channels = in_channelsself.pool_layers = nn.ModuleList([nn.AdaptiveMaxPool2d(output_size=(size, size)) for size in pool_sizes])def forward(self, x: Tensor) -> Tensor:pools = [pool_layer(x) for pool_layer in self.pool_layers]# Resize the output of each pool to have the same number of channelspools_resized = [F.adaptive_max_pool2d(pool, (1, 1)) for pool in pools]spp_out = torch.cat(pools_resized, dim=1)  # Concatenate the resized poolsreturn spp_out

加入SPP代码后的DenseNet网络完整如下:

import re
from typing import List, Tuple, Any
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensorclass _DenseLayer(nn.Module):def __init__(self, input_c: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False):super(_DenseLayer, self).__init__()self.add_module("norm1", nn.BatchNorm2d(input_c))self.add_module("relu1", nn.ReLU(inplace=True))self.add_module("conv1", nn.Conv2d(in_channels=input_c, out_channels=bn_size * growth_rate,kernel_size=1, stride=1, bias=False))self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))self.add_module("relu2", nn.ReLU(inplace=True))self.add_module("conv2", nn.Conv2d(bn_size * growth_rate, growth_rate,kernel_size=3, stride=1, padding=1, bias=False))self.drop_rate = drop_rateself.memory_efficient = memory_efficientdef bn_function(self, inputs: List[Tensor]) -> Tensor:concat_features = torch.cat(inputs, 1)bottleneck_output = self.conv1(self.relu1(self.norm1(concat_features)))return bottleneck_output@staticmethoddef any_requires_grad(inputs: List[Tensor]) -> bool:for tensor in inputs:if tensor.requires_grad:return Truereturn False@torch.jit.unuseddef call_checkpoint_bottleneck(self, inputs: List[Tensor]) -> Tensor:def closure(*inp):return self.bn_function(inp)return cp.checkpoint(closure, *inputs)def forward(self, inputs: Tensor) -> Tensor:if isinstance(inputs, Tensor):prev_features = [inputs]else:prev_features = inputsif self.memory_efficient and self.any_requires_grad(prev_features):if torch.jit.is_scripting():raise Exception("memory efficient not supported in JIT")bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)new_features = self.conv2(self.relu2(self.norm2(bottleneck_output_with_cbam)))if self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_featuresclass _DenseBlock(nn.ModuleDict):_version = 2def __init__(self, num_layers: int, input_c: int, bn_size: int, growth_rate: int, drop_rate: float,memory_efficient: bool = False):super(_DenseBlock, self).__init__()for i in range(num_layers):layer = _DenseLayer(input_c + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient)self.add_module("denselayer%d" % (i + 1), layer)def forward(self, init_features: Tensor) -> Tensor:features = [init_features]for _, layer in self.items():new_features = layer(features)features.append(new_features)return torch.cat(features, 1)class _Transition(nn.Sequential):def __init__(self, input_c: int, output_c: int):super(_Transition, self).__init__()self.add_module("norm", nn.BatchNorm2d(input_c))self.add_module("relu", nn.ReLU(inplace=True))self.add_module("conv", nn.Conv2d(input_c, output_c, kernel_size=1, stride=1, bias=False))self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))class SpatialPyramidPooling(nn.Module):def __init__(self, pool_sizes: List[int], in_channels: int):super(SpatialPyramidPooling, self).__init__()self.pool_sizes = pool_sizesself.in_channels = in_channelsself.pool_layers = nn.ModuleList([nn.AdaptiveMaxPool2d(output_size=(size, size)) for size in pool_sizes])def forward(self, x: Tensor) -> Tensor:pools = [pool_layer(x) for pool_layer in self.pool_layers]# Resize the output of each pool to have the same number of channelspools_resized = [F.adaptive_max_pool2d(pool, (1, 1)) for pool in pools]spp_out = torch.cat(pools_resized, dim=1)  # Concatenate the resized poolsreturn spp_outclass DenseNet(nn.Module):def __init__(self, growth_rate: int = 32, block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),num_init_features: int = 64, bn_size: int = 4, drop_rate: float = 0, num_classes: int = 1000,memory_efficient: bool = False):super(DenseNet, self).__init__()# First conv+bn+relu+poolself.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# Each dense blocknum_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = _DenseBlock(num_layers=num_layers,input_c=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient)self.features.add_module("denseblock%d" % (i + 1), block)num_features = num_features + num_layers * growth_rateif i != len(block_config) - 1:trans = _Transition(input_c=num_features,output_c=num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# Final batch normself.features.add_module("norm5", nn.BatchNorm2d(num_features))# Spatial Pyramid Pooling (SPP) layerspp_pool_sizes = [1, 4, 16]  # You can adjust pool sizes as neededself.spp = SpatialPyramidPooling(spp_pool_sizes, in_channels=num_features)# FC layerself.classifier = nn.Linear(num_features + len(spp_pool_sizes) * num_features, num_classes)# Initialize weightsfor m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x: Tensor) -> Tensor:features = self.features(x)out = F.relu(features, inplace=True)# Apply Spatial Pyramid Poolingspp_out = self.spp(out)# Adjust the number of channels in out to match spp_outout = F.adaptive_avg_pool2d(out, (1, 1))# Concatenate the original feature map with the SPP output along the channel dimensionout = torch.cat([spp_out, out], dim=1)# Flatten the spatial dimensions of outout = torch.flatten(out, 1)# FC layerout = self.classifier(out)return outdef densenet121(**kwargs: Any) -> DenseNet:# Top-1 error: 25.35%# 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth'return DenseNet(growth_rate=32,block_config=(6, 12, 24, 16),num_init_features=64,**kwargs)
def load_state_dict(model: nn.Module, weights_path: str) -> None:# '.'s are no longer allowed in module names, but previous _DenseLayer# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.# They are also in the checkpoints in model_urls. This pattern is used# to find such keys.pattern = re.compile(r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')state_dict = torch.load(weights_path)num_classes = model.classifier.out_featuresload_fc = num_classes == 1000for key in list(state_dict.keys()):if load_fc is False:if "classifier" in key:del state_dict[key]res = pattern.match(key)if res:new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]model.load_state_dict(state_dict, strict=load_fc)print("successfully load pretrain-weights.")

在这里插入图片描述

这篇关于DenseNet分类网络改进--亲测有效的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458077

相关文章

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o