机器学习: t-Stochastic Neighbor Embedding 降维算法 (一)

2023-12-05 11:48

本文主要是介绍机器学习: t-Stochastic Neighbor Embedding 降维算法 (一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Introduction

在计算机视觉及机器学习领域,数据的可视化是非常重要的一个应用,一般我们处理的数据都是成百上千维的,但是我们知道,目前我们可以感知的数据维度最多只有三维,超出三维的数据是没有办法直接显示出来的,所以需要做降维的处理,数据的降维,简单来说就是将高维度的数据映射到较低的维度,如果要能达到数据可视化的目的,就要将数据映射到二维或者三维空间。数据的降维是一种无监督的学习过程,我们可以看成是一种聚类。数据在空间的分布主要有两个特性,一个是相似性,我们可以用类内距离衡量;一个是差异性,可以用类间距离衡量。降维算法,在将数据从高维空间映射到低维空间的时候,需要考虑数据的这两个分布特性,也就是要保持数据在高维空间的分布特性。

降维的算法有很多,最经典的就是PCA了,也就是我们常说的主分量分析,PCA是基于数据集的协方差矩阵,考虑的更多是数据的差异性,而对于数据的相似性,或者说数据的局部分布,类似PCA的线性降维算法是无能为力的。

今天,我们介绍一种非常高效的非线性降维算法: t-SNE,t-SNE 算法可以非常有效地把高维的数据映射到低维的空间,并且保持数据在高维空间的局部结构。t-SNE 算法是 SNE 算法的一个延伸,SNE 即 Stochastic Neighbor Embedding 的简称,SNE 算法利用了每一个数据点的邻近数据点的分布来做降维。在介绍 t-SNE 之前,我们先来看看 SNE 算法。

Stochastic Neighbor Embedding

给定一个高维的数据集 ={x1,x2,...xn} , 我们需要将这个高维的数据集映射到一个低维的数据集 ={y1,y2,...yn} ,为了数据便于显示, 的维度一般是二维或者三维。为了衡量高维数据的相似性,SNE算法设置了一个条件概率:

pj|i=exp(xixj2/(2σ2i))kiexp(xixk2/(2σ2i))

pj|i 衡量的是数据点 j 作为数据点 i 的邻域的概率,这个分布类似一个高斯分布,很显然,离 xi 越近的点, pj|i 的值越大,而离得越远的点,那么概率就会越小,利用这个条件概率来表示每一对数据点的相似性,因为我们考虑的是数据点与数据点之间的关系,不考虑数据点自身与自身的关系,所以 pi|i=0 σi 是方差,后面会介绍如何设置这个方差。

接下来,我们要考虑映射后的低维空间 的数据分布,同样可以用条件概率来表示:

qj|i=exp(yiyj2)kiexp(yiyk2)

这里将方差设置为 12 ,所以高斯函数的分母变为1,如果空间 的数据分布可以很好地拟合数据在空间 的分布,那么两者的条件概率应该是一样的,即 pj|i qj|i 是相等的,基于这一点,SNE算法就是想找到这样一个低维空间 ,使得数据集在两个空间的条件概率尽可能接近,可以用 Kullback-Leibler divergence 来衡量:

C=iKL(PiQi)=ijpj|ilogpj|iqj|i

Pi 表示数据集 中所有其他数据点相对 xi 的条件概率, Qi 表示数据集 中所有其他数据点相对 yi 的条件概率。从上面的表达式可以看出,SNE算法侧重于保持数据的局部结构。为了设置 σi ,可以定义一个 perplexity:

Perp(Pi)=2H(Pi)

H(Pi) 就是我们所说的信息熵

H(Pi)=jpj|ilog2pj|i

利用梯度下降算法,我们可以得到如下的表达式:

Cyi=2j(pj|iqj|i+pi|jqi|j)(yiyj)

为了加速收敛以及增加鲁棒性,可以引入 momentum term

(t)=(t1)+ηC+α(t)((t1)(t2))

这篇关于机器学习: t-Stochastic Neighbor Embedding 降维算法 (一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/457453

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.