基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换

本文主要是介绍基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2 数据清洗、转换

此实验使用S3作为数据源

ETL:

E    extract         输入
T    transform     转换
L    load             输出

大纲

  • 2 数据清洗、转换
    • 2.1 架构图
    • 2.2 数据清洗
    • 2.3 编辑脚本
      • 2.3.1 连接数据源(s3)
      • 2.3.2. 数据结构转换
      • 2.3.2 数据结构拆分、定义
      • 2.3.3 清洗后的数据写入新s3
      • 2.3.4 运行作业
    • 2.4 数据分区
      • 2.4.1 编辑脚本
      • 2.4.2 运行脚本
    • 2.5 总结

2.1 架构图

在这里插入图片描述

2.2 数据清洗

此步会将S3中的原始数据清洗成我们想要的自定义结构的数据。之后,我们可通过APIGateway+Lambda+Athena来实现一个无服务器的数据分析服务。

步骤图例
1、入口在这里插入图片描述
2、创建Job(s3作为数据源,则Type选择Spark,若为Kinesis等,选择Stream Spark)在这里插入图片描述
3、IAM角色需要有s3与Glue的权限在这里插入图片描述
4、选择s3脚本位置,若已经完成脚本的编写工作,则可以选择第二项或第三项,若无则Glue会提供默认脚本在这里插入图片描述
5、安全配置参数在这里插入图片描述建议:添加参数–enable-auto-scaling为true。每次在我们执行Job任务时,会根据运行 ETL 任务的数据处理单元(DPU)的个数来分配动态IP,在我们子网的动态IP数低于DPU数时,Job将会执行失败。此参数将会动态分配IP。
6、数据源()在这里插入图片描述
7、数据目标(我们会将清洗后的数据存储到新的s3桶)在这里插入图片描述
8、设计架构(在本案例中,我们会自定义脚本。所以不再在此处设计架构)(此处设计后,脚本会自动生成相关代码)在这里插入图片描述
9、保存在这里插入图片描述

2.3 编辑脚本

脚本中的args参数的键值需要从Job的安全配置参数中定义

2.3.1 连接数据源(s3)

#数据源
datasource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "datasource")

2.3.2. 数据结构转换

mapped_readings = ApplyMapping.apply(frame = datasource, mappings = [("lclid", "string", "meter_id", "string"), \("datetime", "string", "reading_time", "string"), \("KWH/hh (per half hour)", "double", "reading_value", "double")], \transformation_ctx = "mapped_readings")

2.3.2 数据结构拆分、定义

mapped_readings_df = DynamicFrame.toDF(mapped_readings)mapped_readings_df = mapped_readings_df.withColumn("obis_code", lit(""))
mapped_readings_df = mapped_readings_df.withColumn("reading_type", lit("INT"))reading_time = to_timestamp(col("reading_time"), "yyyy-MM-dd HH:mm:ss")
mapped_readings_df = mapped_readings_df \.withColumn("week_of_year", weekofyear(reading_time)) \.withColumn("date_str", regexp_replace(col("reading_time").substr(1,10), "-", "")) \.withColumn("day_of_month", dayofmonth(reading_time)) \.withColumn("month", month(reading_time)) \.withColumn("year", year(reading_time)) \.withColumn("hour", hour(reading_time)) \.withColumn("minute", minute(reading_time)) \.withColumn("reading_date_time", reading_time) \.drop("reading_time")

2.3.3 清洗后的数据写入新s3

# write data to S3
filteredMeterReads = DynamicFrame.fromDF(mapped_readings_df, glueContext, "filteredMeterReads")s3_clean_path = "s3://" + args['clean_data_bucket']glueContext.write_dynamic_frame.from_options(frame = filteredMeterReads,connection_type = "s3",connection_options = {"path": s3_clean_path},format = "parquet",transformation_ctx = "s3CleanDatasink")

2.3.4 运行作业

    执行成功后,状态将变为"SUCCESS",失败将会给出失败信息,可在CloudWatch 中查看详情

在这里插入图片描述

在这里插入图片描述


清洗后的数据保存到了s3


在这里插入图片描述
数据清洗完毕后,可通过上一篇中的爬网程序步骤,将清洗后的数据的结构创建表到数据目录中,
此时我们可以使用Athena对清洗后的数据进行分析。

2.4 数据分区

接下来我们对数据进行分区处理(此处只提供了按天分区
重新进行数据清洗中的创建Job操作后,重写脚本

2.4.1 编辑脚本

连接数据源。表为上一步最后重新爬取生成的新表。

cleanedMeterDataSource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "cleanedMeterDataSource")

根据type与data_str分区

business_zone_bucket_path_daily = "s3://{}/daily".format(args['business_zone_bucket'])businessZone = glueContext.write_dynamic_frame.from_options(frame = cleanedMeterDataSource, \connection_type = "s3", \connection_options = {"path": business_zone_bucket_path_daily, "partitionKeys": ["reading_type", "date_str"]},\format = "parquet", \transformation_ctx = "businessZone")

2.4.2 运行脚本

分区后的数据结果:
在这里插入图片描述
再次创建、运行爬网程序,将会在数据目录中生成新的分区表。

2.5 总结

到这一步,我们已经使用Glue ETL对s3桶中的数据进行了清洗、分区操作。在进行上篇中的Athena操作后,我们已经可以通过Athena直接查询到清洗、分区后的数据集了。
接下来,我们会通过使用APIGateway+Lambda+Athena来构建一个无服务器的数据查询分析服务。

这篇关于基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456729

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主