20:kotlin 类和对象 --泛型(Generics)

2023-12-05 03:52
文章标签 对象 kotlin 20 泛型 generics

本文主要是介绍20:kotlin 类和对象 --泛型(Generics),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

类可以有类型参数

class Box<T>(t: T) {var value = t
}

要创建类实例,需提供类型参数

val box: Box<Int> = Box<Int>(1)

如果类型可以被推断出来,可以省略

val box = Box(1)

通配符

在JAVA泛型中有通配符?? extends E? super E,在kotlin中没有这个概念,取而代之的是Declaration-site variancetype projections

Declaration-site variance

out 协变

对于如下代码

interface Source<T> {fun next():T
}fun demo(x : Source<Number>){val objects: Source<Any> = x
}

编译器报错 – 类型不匹配
在这里插入图片描述

想要代码成立需要在泛型定义时使用out

interface Source<T> {fun next():T
}fun demo(x : Source<Number>){val objects: Source<Any> = x
}

in 逆变

对于代码

interface Comparable<T> {operator fun compareTo(other: T): Int
}fun demo(x: Comparable<Number>) {x.compareTo(1.0)val y: Comparable<Int> = x
}

报错类型不匹配
在这里插入图片描述
想要代码成立需要在泛型定义时使用in

interface Comparable<in T> {operator fun compareTo(other: T): Int
}fun demo(x: Comparable<Number>) {x.compareTo(1.0)val y: Comparable<Int> = x
}

如果T类型作为参数(消费)就是用in,如果作为返回值(生产)就用out
Consumer in, Producer out!
逆变就是大类型变小类型,协变就是小类型变大类型

type projections(类型投影)

Use-site variance: type projections(使用点位变异:类型投影)

对于以下代码

class Demo<T>{fun copy(from: Array<T>, to: Array<T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}fun main() {val str: Array<String> = arrayOf("hello", "world")val obj: Array<Any> = arrayOf(123, 432)Demo<Any>().copy(str, obj)
}

报错
在这里插入图片描述
在类声明时,不管是使用class Demo<in T>还是class Demo<out T>都会报错,为解决这种情况,可以修改copy方法的from参数类型为from: Array<out T>,因为from作为生产者,生产数组中的值

class Demo<T>{fun copy(from: Array<out T>, to: Array<T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}

当然也可以改成下边写法

class Demo<T>{fun copy(from: Array<T>, to: Array<in T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}fun main() {val str: Array<String> = arrayOf("hello", "world")val obj: Array<Any> = arrayOf(123, 432)Demo<String>().copy(str, obj)
}

星号投影(*)

有时候参数是一个泛型类型,但是在定义方法的时候不能确定泛型的具体类型,需要用到*投影
语法如下

  • 对于泛型类型Foo<out T : TUpper>T是一个具有上界TUpper的协变类型参数,Foo<*>等价于Foo<out TUpper>。这意味着当T未知时,你可以安全地从Foo<*>中读取TUpper的值。
  • 对于泛型类型Foo<in T>T是一个逆变类型参数,Foo<*>等价于Foo<in Nothing>。这意味着当T未知时,你无法以安全的方式向Foo<*>写入任何值。
  • 对于泛型类型Foo<T : TUpper>T是一个不变类型参数,具有上界TUpperFoo<*>在读取值时等价于Foo<out TUpper>,在写入值时等价于Foo<in Nothing>

举个例子

class Box<out T : Any>(private val value: T) {fun getValue(): T {return value}
}fun printBoxValue(box: Box<*>) {val value = box.getValue()println(value)
}fun main(){printBoxValue(Box(123)) // 123printBoxValue(Box("hello world"))   // hello world
}

printBoxValue方法的参数使用*投影

如果一个泛型类型有多个类型参数,每个参数可以独立进行投影

泛型函数

不仅类可以有类型参数,函数也可以有类型参数。类型参数位于函数名称之前

fun <T> singletonList(item: T): List<T> {// ...
}fun <T> T.basicToString(): String { // 扩展函数// ...
}

要调用泛型函数,在调用点的函数名称之后指定类型参数

val l = singletonList<Int>(1)

如果可以从上下文中推断出类型参数,则可以省略类型参数

val l = singletonList(1)

泛型约束

对于给定的类型参数,可以通过泛型约束来限制可替代的所有可能类型。

最常见的约束类型是上界(upper bounds)

fun <T : Comparable<T>> sort(list: List<T>) {  ... }

在冒号后指定的类型是上界,表示只有Comparable<T>的子类型可以替代T

sort(listOf(1, 2, 3)) // 正确。Int是Comparable<Int>的子类型
sort(listOf(HashMap<Int, String>())) // 错误:HashMap<Int, String>不是Comparable<HashMap<Int, String>>的子类型

如果不指定上界,则默认为Any?类型的

当一个类型参数需要满足多个上界时,需要使用 where 子句来指定这些上界条件

fun <T> processValues(list: List<T>) where T : CharSequence, T : Comparable<T> {val sortedValues = list.sorted()for (value in sortedValues) {println(value)}
}val stringList: List<String> = listOf("apple", "banana", "cherry")
val intList: List<Int> = listOf(1, 2, 3)
val mixedList: List<Any> = listOf("hello", 42, true)processValues(stringList) // apple, banana, cherry
processValues(intList) // 报错 -- Int 不满足 CharSequence 的上界
processValues(mixedList) // 报错 --Any 不满足 CharSequence 的上界

绝对非空类型(Definitely non-nullable types)

为了方便和java接口和类交互,如果有如下java接口

import org.jetbrains.annotations.*;public interface Game<T> {public T save(T x) {}@NotNullpublic T load(@NotNull T x) {}
}

要继承该接口并重写load方法,使用& Any来声明一个非空参数

interface ArcadeGame<T1> : Game<T1> {override fun save(x: T1): T1// T1 is definitely non-nullableoverride fun load(x: T1 & Any): T1 & Any
}

如果是纯kotlin项目,不需要使用此方法声明,kotlin的类型推断会做这件事

class ArcadeGame<T> {fun load(x: T & Any){println(x)}
}fun main(){ArcadeGame<String?>().load(null)    // 这里String?即使可以为空,调用load方法时传入null依旧报错
}

类型擦除

kotlin对泛型声明的类型安全检查是在编译时进行的。在运行时,泛型类型的实例不保存有关其实际类型参数的任何信息。这种类型信息被称为擦除。例如,Foo<Bar>Foo<Baz?> 的实例在擦除后变为 Foo<*>

泛型类型的检查和转换

由于类型擦除的存在,不能使用is进行如下检查

class ArcadeGame<T>{fun check(x:Any){if (x is T){}   // 报错 -- Cannot check for instance of erased type: T}
}fun main() {val game = ArcadeGame<String?>()if (game is ArcadeGame<String>) {} // 报错 -- Cannot check for instance of erased type: ArcadeGame<String>
}

可以使用型号投影进行检查

class ArcadeGame<T>fun main() {val game = ArcadeGame<String?>()if (game is ArcadeGame<*>) {} 
}

对于x is T这种检查方式,可以进行如下改造

class ArcadeGame<T>(private val type: Class<T>) {fun check(x: Any) {if (type.isInstance(x)) {// x 是 T 类型的实例}}
}fun main() {val game = ArcadeGame<String>(String::class.java)
}

The type arguments of generic function calls are also only checked at compile time. Inside the function bodies, the type parameters cannot be used for type checks, and type casts to type parameters (foo as T) are unchecked. The only exclusion is inline functions with reified type parameters, which have their actual type arguments inlined at each call site. This enables type checks and casts for the type parameters. However, the restrictions described above still apply for instances of generic types used inside checks or casts. For example, in the type check arg is T, if arg is an instance of a generic type itself, its type arguments are still erased.

inline fun <reified A, reified B> Pair<*, *>.asPairOf(): Pair<A, B>? {if (first !is A || second !is B) return nullreturn first as A to second as B
}val somePair: Pair<Any?, Any?> = "items" to listOf(1, 2, 3)val stringToSomething = somePair.asPairOf<String, Any>()
val stringToInt = somePair.asPairOf<String, Int>()
val stringToList = somePair.asPairOf<String, List<*>>()
val stringToStringList = somePair.asPairOf<String, List<String>>() // Compiles but breaks type safety!
// Expand the sample for more details

未经检查的类型转换(Unchecked casts)

对于泛型类型转换,无法在运行时进行检查。

fun gen(): Map<String, *> {return mapOf("one" to "你好", "two" to 123)
}fun main() {val gen = gen()gen as Map<Int, Int>	// 提示 -- Unchecked cast: Map<String, *> to Map<Int, Int>println(gen)	// {one=你好, two=123}
}

因为类型擦除的缘故,gen as Map<Int, Int>并不会报错,只是在编译期做出提醒

如果是这样转换则会报错

fun main() {val gen = gen()gen["one"] as Int   // 报错 -- java.lang.ClassCastException: class java.lang.String cannot be cast to class java.lang.Integer (java.lang.String and java.lang.Integer are in module java.base of loader 'bootstrap')println(gen)
}

如果不想提示,使用注解@Suppress("UNCHECKED_CAST")

fun main() {val gen = gen()@Suppress("UNCHECKED_CAST")gen as Map<Int, Int>println(gen)
}

JVM上,数组类型保留有关其元素被擦除的类型的信息,并且对数组类型的类型转换进行了部分检查:元素类型的可为空性和实际类型参数仍然被擦除。

fun gen(): Array<*> {return arrayOf("hello", "world")
}fun main() {val gen = gen()gen as Array<Int>   //  java.lang.ClassCastException: class [Ljava.lang.String; cannot be cast to class [Ljava.lang.Integer; ([Ljava.lang.String; and [Ljava.lang.Integer; are in module java.base of loader 'bootstrap')println(gen)
}

类型参数的下划线操作符

当其他类型被显式指定时,可以使用下划线操作符来自动推断参数的类型

abstract class SomeClass<T> {abstract fun execute() : T
}class SomeImplementation : SomeClass<String>() {override fun execute(): String = "Test"
}class OtherImplementation : SomeClass<Int>() {override fun execute(): Int = 42
}object Runner {inline fun <reified S: SomeClass<T>, T> run() : T {return S::class.java.getDeclaredConstructor().newInstance().execute()}
}fun main() {// T 是 String 类型,因为SomeImplementation为SomeClass<String>val s = Runner.run<SomeImplementation, _>()assert(s == "Test")// T 是 Int 类型 ,因为SomeImplementation为SomeClass<Int>val n = Runner.run<OtherImplementation, _>()assert(n == 42)
}

这篇关于20:kotlin 类和对象 --泛型(Generics)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456042

相关文章

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

kotlin中的数据转换方法(示例详解)

《kotlin中的数据转换方法(示例详解)》这篇文章介绍了Kotlin中将数字转换为字符串和字符串转换为数字的多种方法,包括使用`toString()`、字符串模板、格式化字符串、处理可空类型等,同时... 目录1. 直接使用 toString() 方法2. 字符串模板(自动转换)3. 格式化字符串(控制输

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3