Python实现交易策略评价指标-夏普比率

2023-12-04 23:36

本文主要是介绍Python实现交易策略评价指标-夏普比率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.夏普比率的定义

在投资的过程中,仅关注策略的收益率是不够的,同时还需要关注承受的风险,也就是收益风险比。

夏普比率正是这样一个指标,它表示承担单位的风险会产生多少超额收益。用数学公式描述就是:

S h a r p R a t i o = E ( R p ) − R f σ p SharpRatio = \frac{ E(R_p) - R_f}{\sigma_p} SharpRatio=σpE(Rp)Rf
参数说明:

E ( R p ) E(R_p) E(Rp): 表示投资组合预期收益率
R f R_f Rf: 表示无风险收益率,一般用国债收益率代替
σ p \sigma_p σp: 投资组合收益率的标准差(投资组合的风险)

2. 计算夏普比率
  1. 获取贵州茅台2015.1.1 ~ 2020.12.31期间的日k数据并保存到文件中

    import pandas as pd
    import numpy as np
    import baostock as bslg = bs.login()
    # 显示登陆返回信息
    print('login respond error_code:'+lg.error_code)
    print('login respond  error_msg:'+lg.error_msg)#### 获取沪深A股历史K线数据 ####
    # 获取后复权数据
    rs = bs.query_history_k_data_plus("sh.600519","date,code,open,high,low,close,volume",start_date='2015-01-01', end_date='2020-12-31',frequency="d", adjustflag="1")
    print('query_history_k_data_plus respond error_code:'+ rs.error_code)
    print('query_history_k_data_plus respond  error_msg:'+ rs.error_msg)data_list = []
    while (rs.error_code == '0') & rs.next():# 获取一条记录,将记录合并在一起data_list.append(rs.get_row_data())
    result = pd.DataFrame(data_list, columns=rs.fields)#### 结果集输出到csv文件 ####   
    result.to_csv("贵州茅台_k_data.csv", index=False)
    print(result)#### 登出系统 ####
    bs.logout()
    
  2. 读取贵州茅台日k数据

    # 读取贵州茅台的日k数据,读入日期和收盘价
    data = pd.read_csv("贵州茅台_k_data.csv")[['date', 'open', 'high', 'low', 'close']];
    
  3. 将日k数据转换为年k(计算夏普比率的收益率以年为单位进行计算,当然也可以选择其他周期)

    data['date'] = pd.to_datetime(data.date)
    data['year'] = data.date.dt.to_period('Y')
    year_k_data = data.groupby('year').agg({'open':'first', 'high':'max', 'low' :'min', 'close' :'last'})
    print(year_k_data)
    

    在这里插入图片描述

  4. 计算每年的年化收益率

    year_k_data['return_rate'] = (year_k_data['close'] - year_k_data['open']) / year_k_data['open']
    print(year_k_data)
    

在这里插入图片描述

  1. 计算夏普比率
# 无风险收益率一般用国债收益率代替,本例中取3%
sharp_ration = (year_k_data['return_rate'].mean() - 0.03) / year_k_data['return_rate'].std()
print(sharp_ration)

1.2137091184299078

这篇关于Python实现交易策略评价指标-夏普比率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/455311

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详