数据增广【以图像增广为例】

2023-12-04 17:30
文章标签 数据 图像 为例 增广

本文主要是介绍数据增广【以图像增广为例】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据增广/增强: 对一个已有数据集中的数据进行变换,使其有更多的多样性。
数据增广通过通过变形数据来获得多样性从而使得模型的泛化性能更好
例如:

  • 在语言里面加入各种不同的背景噪音
  • 改变图片的颜色和形状

增强数据一般在线随机生成,主要用在训练过程中。

常见的图像增广:

  • 翻转
  • 切割【随机】
  • 变色

从结果向前推可能会出现的结果,然后对图片进行处理

1.实现

%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2ld2l.set_figsize()
img = d2l.Image.open('../img/cat1.jpg')
d2l.plt.imshow(img)
# 输入参数(图,作用方式,行, 列【生成8张处理后的图】,尺寸)
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):Y = [aug(img) for _ in range(num_rows * num_cols)]d2l.show_images(Y, num_rows, num_cols, scale=scale)
# 左右翻转图像
apply(img, torchvision.transforms.RandomHorizontalFlip())
# 上下翻转图像
apply(img, torchvision.transforms.RandomVerticalFlip())
# 随机裁剪
shape_aug = torchvision.transforms.RandomResizedCrop((200, 200), scale=(0.1, 1), ratio=(0.5, 2)) # 输出尺寸,在scale区域【相对于源图】,高宽比
apply(img, shape_aug)
# 随机更改图片的亮度
apply(img,torchvision.transforms.ColorJitter(brightness=0.5, contrast=0,saturation=0, hue=0))
# 随机更改图像的色调
apply(img,torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0,hue=0.5)) # hue改变
# 随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5,saturation=0.5, hue=0.5)
apply(img, color_aug)
# 结合多种图像增广方法
augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug]) # 先翻转-》颜色-》形状
apply(img, augs)
# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8) # 打印数据集
# 只使用最简单的随机左右翻转
train_augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor()]) # 把图像变为4D矩阵便于后续处理test_augs = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
# 定义一个辅助函数,以便于读取图像和应用图像增广
def load_cifar10(is_train, augs, batch_size):dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,transform=augs, download=True)dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=is_train,num_workers=d2l.get_dataloader_workers())return dataloader
# 定义 train_with_data_aug 函数,使用图像增广来训练模型
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)def init_weights(m):if type(m) in [nn.Linear, nn.Conv2d]:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)def train_with_data_aug(train_augs, test_augs, net, lr=0.001):train_iter = load_cifar10(True, train_augs, batch_size)test_iter = load_cifar10(False, test_augs, batch_size)loss = nn.CrossEntropyLoss(reduction="none")trainer = torch.optim.Adam(net.parameters(), lr=lr) # Adam可以看作一个平滑的SGDtrain_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)# 训练模型
train_with_data_aug(train_augs, test_augs, net)

这篇关于数据增广【以图像增广为例】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/454291

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自