【电子电路】(2)PWM转DAC如何实现参数选择

2023-12-04 16:58

本文主要是介绍【电子电路】(2)PWM转DAC如何实现参数选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讲解了PWM转DAC如何实现,现在讲PWMZ转DAC如何搭建电路

首先我们看一下脉冲信号的频谱,根据傅立叶变换,周期为T的脉冲信号可以分解为多个单频率的信号的叠加,最小的频率分量为1/T,有兴趣的同学可以通过Matlab自己做一下分析。

在这里插入图片描述
比如,我们对幅度为3.3V、周期为10uS(频率100KHz)、占空比为50%的脉冲信号(此时为方波)进行FFT变换,可以得到1.65V的直流分量、100KHz、300KHz(3次谐波)、500KHz(5次谐波)。。。等频率分量,最小的交流频率为100KHz。
在这里插入图片描述
占空比为50%的脉冲信号的波形
在这里插入图片描述
占空比为50%的脉冲信号的频谱分量

改变占空比呢?来看看占空比为10%和90%的脉冲波形经过FFT之后的交流频率分量
在这里插入图片描述
占空比为10%的脉冲的频率分量
在这里插入图片描述
占空比为90%的脉冲的频率分量,只是直流分量不同,交流部分与10%的相同

从以上简单的分析可以看出,无论占空比是多少,脉冲波形除了直流分量以外,交流部分的最低频率都为脉冲的重复频率100KHz上,在DC和脉冲重复频率100KHz之间一马平川,光秃秃的。

因此,如果要得到直流分量,只需要去掉100KHz以上的频谱能量就可以了。最简单的方法就是通过由一个电阻R和一个电容C构成的一阶低通滤波器,其截止频率为:

fc=1/2*Pi*R*C,

我们要得到的是直流分量,滤除的是100KHz以上的频率,因此只要截止频率在100KHz以内,并且能对100KHz以上的所有频谱都有较好的抑制,就能够得到比较好的DC输出。

在这里插入图片描述
LPF电路构成和频率响应
在这里插入图片描述
RC电路的时域响应

可以想象,截止频率越高,越是接近要滤除的频率(比如50KHz之于100KHz),该滤波器对100KHz的滤波效果就较差,就会有一定量的残余能量出现在滤波器的输出端,如下图,也就是输出的波形纹波比较高。

在这里插入图片描述
对脉冲频率为100KHz的信号进行截止频率为50KHz的低通滤波得到的输出信号,纹波比较高

如果降低截止频率,越是接近直流,从而距离要滤除的频率越远,比如针对100KHz的脉冲频率选择1KHz作为LPF的截止频率,则在100KHz处可以达到非常高的抑制度,100KHz的残留就非常小,也就是在输出的直流信号上的纹波可以变得很小,见下图

在这里插入图片描述
截止频率为1KHz的低通滤波器的建立时间很长 ~ 1ms

但却出现了另外一个问题 - 需要花费很久的时间(学名叫建立时间 setting time)才能达到应该达到的DAC的直流值。原因就是fc低,意味着RC更高,也就是充电的时间常数变得很长 - R增大意味着对C进行充电的电流变小,要对C冲电到一定的值花费的时间也就更久。

因此这就出现了一个让人纠结的选择:

  • 选择较低的截止频率 - 较低的纹波,较长的建立时间
  • 选择较高的截止频率 - 较大的纹波,较快地建立时间

你会说一阶不够,要不多用几阶滤波器,加上电感或者有源的运放来进行低通滤波,这确实能改善滤波的效果,但 – 电路的复杂度增加、元器件成本增加了,且改善有限。

那不增加电路的复杂程度,还是只用这一个R和一个C是否能够改善性能呢?

答案是肯定的,其实也很简单 - 把交流分量的频率踢得远远的,在保持较低的时间常数(建立时间短)的情况下,将LPF的截止频率fc和要滤除的脉冲重复频率之间的间隔尽可能的拉开,比如将100KHz的重复频率给升到10MHz(出去100倍),占空比不变,如果用原来的50KHz的滤波器,到了10MHz的地方怎么也把10MHz以上的频率给消灭的只剩下一点渣了。看下图,直流建立时间大约为15µs, 纹波变得只有25mV左右了。

在这里插入图片描述
用截止频率为50KHz的RC得到的建立时间大约为15µs

在这里插入图片描述
用截止频率为50KHz的RC对10MHz的脉冲信号进行LPF得到的纹波

是不是很神奇?其实理论依据很简单,自己把低通滤波器的频响曲线画一下就很容易理解了。

到这里我们就应该知道如何设计自己的PWM系统的各项参数来构造一个简单好用的DAC。

这篇关于【电子电路】(2)PWM转DAC如何实现参数选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/454196

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S