二百一十、Hive——Flume采集的JSON数据文件写入Hive的ODS层表后字段的数据残缺

本文主要是介绍二百一十、Hive——Flume采集的JSON数据文件写入Hive的ODS层表后字段的数据残缺,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

在用Flume把Kafka的数据采集写入Hive的ODS层表的HDFS文件路径后,发现HDFS文件中没问题,但是ODS层表中字段的数据却有问题,字段中的JSON数据不全

二、Hive处理JSON数据方式

(一)将Flume采集Kafka的JSON数据以字符串的方式整个写入Hive表中,然后再用get_json_object或json_tuple进行解析

1、ODS层建静态分区外部表,Flume直接写入ODS层表的HDFS路径下

create external table  if not exists  ods_evaluation(evaluation_json  string
)
comment '评价数据外部表——静态分区'
partitioned by (day string)
row format delimited fields terminated by '\x001'
lines terminated by '\n'
stored as SequenceFile
;

2、用get_json_object进行解析

selectget_json_object(evaluation_json,'$.deviceNo')        device_no,get_json_object(evaluation_json,'$.createTime')      create_time,get_json_object(evaluation_json,'$.cycle')           cycle,get_json_object(evaluation_json,'$.laneNum')         lane_num,get_json_object(evaluation_json,'$.evaluationList')   evaluation_list
from hurys_dc_ods.ods_evaluation
;

(二)在导入Hive表之前将JSON数据已拆分好,需要使用JsonSerDe

create  external  table  if not exists ods_track(device_no    string     comment '设备编号',create_time  timestamp  comment '创建时间',track_data   string     comment '轨迹数据集合(包含多个目标点)'
)
comment '轨迹数据表——静态分区'
partitioned by (day  date)
row format serde  'org.apache.hadoop.hive.serde2.OpenCSVSerde'
with serdeproperties (
"separatorChar" = ",",
"quoteChar" = "\"",
"escapeChar" = "\\"
)
tblproperties("skip.header.line.count"="1") ; 

注意:使用JsonSerDe时,每行必须是一个完整的JSON,一个JSON不能跨越多行,否则不能使用JsonSerDe

三、ODS层原有建表SQL

create external table  if not exists  ods_evaluation(evaluation_json  string
)
comment '评价数据外部表——静态分区'
partitioned by (day string)
row format delimited fields terminated by '\x001'
lines terminated by '\n'
stored as SequenceFile
;

四、HDFS文件中的数据

HDFS文件中JSON数据完整,数据没问题

五、报错详情

查看表数据时发现evaluation_json字段的数据不完整

六、解决方法

(一)重新建表,建表语句中删除其中两行

--row format delimited fields terminated by '\x001'
--lines terminated by '\n'

(二)新建表SQL

create external table  if not exists  ods_evaluation(evaluation_json  string
)
comment '评价数据外部表——静态分区'
partitioned by (day string)
stored as SequenceFile
;

七、查询新表中evaluation_json字段的数据

数据解析成功!

又解决了一个问题,宾果!

这篇关于二百一十、Hive——Flume采集的JSON数据文件写入Hive的ODS层表后字段的数据残缺的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/453667

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=