严蔚敏数据结构p17(2.19)——p18(2.24) (c语言代码实现)

2023-12-04 08:52

本文主要是介绍严蔚敏数据结构p17(2.19)——p18(2.24) (c语言代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2.19已知线性表中的元素以值递增有序排列,并以单链表作存储结构。试写一高效的算法,
删除表中所有值大于 mink 且小于 maxk 的元素(若表中存在这样的元素)同时释放被删结点空间,
并分析你的算法的时间复杂度(注意:mink 和 maxk 是给定的个参变量,它们的值可以和表中的元素相同,也可以不同)。

本题代码如下

void deletemidst(linklist* L, int mink, int maxk)
{lnode* p = (*L)->next, * pre = *L; // 定义指针p和pre分别指向链表头结点的下一个结点和链表头结点lnode* q; // 定义指针q用于释放临时结点while (p) // 遍历链表{if (p->data > mink && p->data < maxk) // 如果当前结点的值在指定范围内{q = p; // 将当前结点赋值给临时结点qp = p->next; // 将指针p指向下一个结点pre->next = p; // 将指针pre的next指针指向下一个结点free(q); // 释放临时结点q所占用的内存空间}else // 如果当前结点的值不在指定范围内{p = p->next; // 将指针p指向下一个结点pre = pre->next; // 将指针pre指向下一个结点}}
}

完整测试代码如下

#include<stdio.h>
#include<stdlib.h>
typedef struct lnode
{int data; // 数据域,存储整数值struct lnode* next; // 指针域,指向下一个节点
}lnode, * linklist; // 定义链表结构体和指针类型
int a[8] = { 1,2,3,4,5,6,7,8 }; // 初始化数组a
int n = 8; // 数组a的长度
// 构建链表函数
void buildlinklist(linklist* L)
{*L = (lnode*)malloc(sizeof(lnode)); // 分配内存空间给链表头结点(*L)->next = NULL; // 初始化链表头结点的next指针为NULLlnode* s, * r = *L; // 定义临时结点s和当前结点rint i = 0;for (i = 0; i < n; i++) // 遍历数组a{s = (lnode*)malloc(sizeof(lnode)); // 分配内存空间给临时结点ss->data = a[i]; // 将数组a中的元素赋值给临时结点s的data域s->next = r->next; // 将当前结点的next指针指向临时结点的next指针所指向的结点r->next = s; // 将当前结点的next指针指向临时结点sr = s; // 更新当前结点r为临时结点s}r->next = NULL; // 将最后一个结点的next指针设为NULL
}
// 删除指定范围内的值函数
void deletemidst(linklist* L, int mink, int maxk)
{lnode* p = (*L)->next, * pre = *L; // 定义指针p和pre分别指向链表头结点的下一个结点和链表头结点lnode* q; // 定义指针q用于释放临时结点while (p) // 遍历链表{if (p->data > mink && p->data < maxk) // 如果当前结点的值在指定范围内{q = p; // 将当前结点赋值给临时结点qp = p->next; // 将指针p指向下一个结点pre->next = p; // 将指针pre的next指针指向下一个结点free(q); // 释放临时结点q所占用的内存空间}else // 如果当前结点的值不在指定范围内{p = p->next; // 将指针p指向下一个结点pre = pre->next; // 将指针pre指向下一个结点}}
}
// 打印链表函数
void print(linklist* L)
{lnode* k = (*L)->next; // 定义指针k指向链表头结点的下一个结点while (k) // 遍历链表{printf("%d ", k->data); // 输出当前结点的值k = k->next; // 将指针k指向下一个结点}
}int main()
{linklist L; // 定义链表Lbuildlinklist(&L); // 调用构建链表函数printf("原始单链表为:"); // 输出提示信息print(&L); // 调用打印链表函数printf("删除mink与maxk中间的值后的单链表为:"); // 输出提示信息deletemidst(&L, 2, 6); // 调用删除指定范围内的值函数print(&L); // 调用打印链表函数return 0; // 返回0表示程序正常结束
}

测试结果为

 

2.20 同 2.19 题条件,试写一高效的算法,删除表中所有值相同的多余元素(得操作后的线性表中所有元素的值均不相同),同时释放被删结点空间,并分析你的算法的时间复杂度。

本题代码如下

void deleterepeat(linklist* L)
{lnode* p = (*L)->next, * pre = *L;//p为工作指针,pre为它的前驱指针防止断链lnode* q;while (p->next!=NULL){if (p->next->data == pre->next->data)//如果p的后继的值域等与它本身则执行删除操作{q = p;p = p->next;pre->next = p;free(q);}else//否则继续向后遍历{p = p->next;pre = pre->next;}}
}void deleterepeat(linklist* L)
{lnode* p = (*L)->next, * pre = *L;//p为工作指针,pre为它的前驱指针防止断链lnode* q;while (p->next!=NULL){if (p->next->data == pre->next->data)//如果p的后继的值域等与它本身则执行删除操作{q = p;p = p->next;pre->next = p;free(q);}else//否则继续向后遍历{p = p->next;pre = pre->next;}}
}

完整测试代码

#include<stdio.h>
#include<stdlib.h>
typedef struct lnode
{int data;struct lnode* next;
}lnode,*linklist;
int a[8] = { 1,2,2,3,3,4,5,6 };
int n = 8;
void buildlinklist(linklist* L)
{*L = (lnode*)malloc(sizeof(lnode));(*L)->next = NULL;int i = 0;lnode* s, * r = *L;for (i = 0; i < n; i++){s = (lnode*)malloc(sizeof(lnode));s->data = a[i];s->next = r->next;r->next = s;r = s;}r->next = NULL;
}
void deleterepeat(linklist* L)
{lnode* p = (*L)->next, * pre = *L;//p为工作指针,pre为它的前驱指针防止断链lnode* q;while (p->next!=NULL){if (p->next->data == pre->next->data)//如果p的后继的值域等与它本身则执行删除操作{q = p;p = p->next;pre->next = p;free(q);}else//否则继续向后遍历{p = p->next;pre = pre->next;}}
}
void print(linklist* L)
{lnode* k = (*L)->next;while (k){printf("%d ", k->data);k = k->next;}
}
int main()
{linklist L;buildlinklist(&L);printf("原始单链表为:"); print(&L); // 调用打印链表函数printf("\n删除重复值后的单链表为:");deleterepeat(&L); // 调用删除重复值的函数print(&L); // 调用打印链表函数return 0; // 返回0表示程序正常结束
}

测试结果为

 

2.21 试写一算法,实现顺序表的就地逆置,即利用原表的存储空间将线性表(a1,a2,...,an)逆置为(an,...,a2,a1)。可以看下面这个(说的不好请见谅)👇

c语言代码实现数据结构课后代码题顺序表p18 2_哔哩哔哩_bilibili

本题代码如下

void nizhi(struct sqlist *s)
{int i = 0; // 定义一个整型变量i,用于遍历顺序表int j = s->length; // 定义一个整型变量j,用于存储顺序表的长度int temp = 0; // 定义一个整型变量temp,用于临时存储元素for (i = 0; i < s->length / 2; i++) // 遍历顺序表的前半部分{temp = s->a[i]; // 将当前元素存储到temp中s->a[i] = s->a[s->length - 1 - i]; // 将后半部分的元素赋值给前半部分s->a[s->length - 1 - i] = temp; // 将temp中的元素赋值给后半部分}
}

完整测试代码如下

#include<stdio.h>
#define Max 10
struct sqlist
{int a[Max];int length;
};
void nizhi(struct sqlist *s)
{int i = 0; // 定义一个整型变量i,用于遍历顺序表int j = s->length; // 定义一个整型变量j,用于存储顺序表的长度int temp = 0; // 定义一个整型变量temp,用于临时存储元素for (i = 0; i < s->length / 2; i++) // 遍历顺序表的前半部分{temp = s->a[i]; // 将当前元素存储到temp中s->a[i] = s->a[s->length - 1 - i]; // 将后半部分的元素赋值给前半部分s->a[s->length - 1 - i] = temp; // 将temp中的元素赋值给后半部分}
}
int main()
{struct sqlist s; // 定义两个顺序表变量sint i = 0; // 定义一个整型变量,用于遍历顺序表ss.length = 5; // 设置顺序表s的长度为5for (i = 0; i < s.length; i++) // 遍历交集结果scanf("%d", &s.a[i]);printf("原顺序表为:");for (i = 0; i < s.length; i++) // 遍历交集结果printf("%d ", s.a[i]); // 输出交集结果中的每个元素nizhi(&s);printf("\n逆置后的顺序表为:");for (i = 0; i < s.length; i++) // 遍历交集结果printf("%d ", s.a[i]); // 输出交集结果中的每个元素return 0; // 程序正常结束,返回0
}

测试结果为

2.22试写一算法,对单链表实现就地逆置(可以看下面的视频讲解)👇

c语言代码实现数据结构课后代码题顺序表p18 2_哔哩哔哩_bilibili

 本题代码如下

void nizhi(linklist* L)//单链表就地逆置
{lnode* p = (*L)->next;lnode* r = p;(*L)->next = NULL;while (p != NULL){p = p->next;r->next = (*L)->next;(*L)->next = r;r = p;}
}

完整测试代码如下

#include<stdio.h>
#define Max 50
struct sqlist
{int a[Max];int length;
};
void nizhi(struct sqlist* s)
{int temp = 0;for (int i = 0; i < s->length / 2; i++){temp = s->a[i];s->a[i] = s->a[s->length - i - 1];s->a[s->length - 1 - i] = temp;}
}
int main()
{struct sqlist s;int j = 0;s.length = 5;for (j = 0; j < s.length; j++)scanf("%d", &s.a[j]);printf("原先数组为:");for (j = 0; j < s.length; j++)printf("%d", s.a[j]);nizhi(&s);printf("\n逆置后的数组为:");for (j = 0; j < s.length; j++)printf("%d", s.a[j]);return 0;
}

测试结果为 

 

 2.23

本题代码如下

linklist Union(linklist* A, linklist* B)
{lnode *C = (lnode*)malloc(sizeof(lnode));C->next = NULL;lnode* ra = (*A)->next, * rb = (*B)->next;lnode* rc = C;while (ra && rb){if (ra->data<rb->data)//若A中当前结点小于B中当前结点值{rc->next = ra;rc = ra;ra = ra->next;}else if (ra->data>rb->data)//若A中当前结点大于B中当前结点值{rc->next = rb;rc = rb;rb = rb->next;}else{rc->next = ra;rc = ra;ra = ra->next;rb= rb->next;}}while (ra)//B遍历完,A没有遍历完{rc->next= ra;rc = ra;ra = ra->next;}while (rb)//A遍历完,B没有遍历完{rc->next = rb;rc = rb;rb= rb->next;}rc->next = NULL; //结果表的表尾结点置空return C;
}

完整测试代码如下

#include<stdio.h>
#include<stdlib.h>
typedef struct lnode
{int data;struct lnode* next;
}lnode, * linklist;
int na = 5;
int nb = 3;
int a[5] = { 1,3,5,7,9};
int b[3] = { 2,4,6 };
void buildlinklist(linklist* L, int arr[], int n)//创建链表
{*L = (lnode*)malloc(sizeof(lnode));(*L)->next = NULL;lnode* s = *L, * r = *L;int i = 0;for (i = 0; i < n; i++){s = (lnode*)malloc(sizeof(lnode));s->data = arr[i];s->next = r->next;r->next = s;r = s;}r->next = NULL;
}
linklist Union(linklist* A, linklist* B)
{lnode *C = (lnode*)malloc(sizeof(lnode));C->next = NULL;lnode* ra = (*A)->next, * rb = (*B)->next;lnode* rc = C;while (ra && rb){if (ra->data<rb->data)//若A中当前结点小于B中当前结点值{rc->next = ra;rc = ra;ra = ra->next;}else if (ra->data>rb->data)//若A中当前结点大于B中当前结点值{rc->next = rb;rc = rb;rb = rb->next;}else{rc->next = ra;rc = ra;ra = ra->next;rb= rb->next;}}while (ra)//B遍历完,A没有遍历完{rc->next= ra;rc = ra;ra = ra->next;}while (rb)//A遍历完,B没有遍历完{rc->next = rb;rc = rb;rb= rb->next;}rc->next = NULL; //结果表的表尾结点置空return C;
}
void print(linklist* L)//输出单链表
{lnode* k = (*L)->next;while (k){printf("%d ", k->data);k = k->next;}
}
int main()
{linklist A, B;buildlinklist(&A, a, na);buildlinklist(&B, b, nb);printf("A链表为:");print(&A);printf("\nB链表为:");print(&B);linklist C = Union(&A, &B);printf("\n合并后的链表为:");print(&C);return 0;
}

 测试结果如下

 

 2.24假设有两个按元素值递增有序排列的线性表A和B均以单链表作存储结构,请编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许表中含有值相同的元素)排列的线性表 C,并要求利用原表(即A表和B 表)的结点空间构造C表。

本题代码如下

linklist Union(linklist* A, linklist* B)
{lnode* C = (lnode*)malloc(sizeof(lnode));C->next = NULL;lnode* ra = (*A)->next, * rb = (*B)->next;lnode* rapre = *A, * rbpre = *B;//rapre为ra的前驱指针,rbpre为rb的前去指针 lnode* rc = C;while (ra && rb){if (ra->data < rb->data)//若A中当前结点小于B中当前结点值{rapre = ra->next;ra->next=rc->next ;rc->next= ra;ra =rapre;}else if (ra->data > rb->data)//若A中当前结点大于B中当前结点值{rbpre = rb->next;rb->next = rc->next;rc->next = rb;rb = rbpre;}else{rapre = ra->next;ra->next = rc->next;rc->next = ra;ra = rapre;rb = rb->next;}}while (ra)//B遍历完,A没有遍历完{rapre = ra->next;ra->next = rc->next;rc->next = ra;ra = rapre;}while (rb)//A遍历完,B没有遍历完{rbpre = rb->next;rb->next = rc->next;rc->next = rb;rb = rbpre;}return C;
}

完整测试代码如下

#include<stdio.h>
#include<stdlib.h>
typedef struct lnode
{int data;struct lnode* next;
}lnode, * linklist;
int na = 5;
int nb = 8;
int a[5] = { 1,3,5,7,9 };
int b[8] = { 2,4,6,8,10,12,14,16 };
void buildlinklist(linklist* L, int arr[], int n)//创建链表
{*L = (lnode*)malloc(sizeof(lnode));(*L)->next = NULL;lnode* s = *L, * r = *L;int i = 0;for (i = 0; i < n; i++){s = (lnode*)malloc(sizeof(lnode));s->data = arr[i];s->next = r->next;r->next = s;r = s;}r->next = NULL;
}
linklist Union(linklist* A, linklist* B)
{lnode* C = (lnode*)malloc(sizeof(lnode));C->next = NULL;lnode* ra = (*A)->next, * rb = (*B)->next;lnode* rapre = *A, * rbpre = *B;//rapre为ra的前驱指针,rbpre为rb的前去指针 lnode* rc = C;while (ra && rb){if (ra->data < rb->data)//若A中当前结点小于B中当前结点值{rapre = ra->next;ra->next=rc->next ;rc->next= ra;ra =rapre;}else if (ra->data > rb->data)//若A中当前结点大于B中当前结点值{rbpre = rb->next;rb->next = rc->next;rc->next = rb;rb = rbpre;}else{rapre = ra->next;ra->next = rc->next;rc->next = ra;ra = rapre;rb = rb->next;}}while (ra)//B遍历完,A没有遍历完{rapre = ra->next;ra->next = rc->next;rc->next = ra;ra = rapre;}while (rb)//A遍历完,B没有遍历完{rbpre = rb->next;rb->next = rc->next;rc->next = rb;rb = rbpre;}return C;
}
void print(linklist* L)//输出单链表
{lnode* k = (*L)->next;while (k){printf("%d ", k->data);k = k->next;}
}
int main()
{linklist A, B;buildlinklist(&A, a, na);buildlinklist(&B, b, nb);printf("A链表为:");print(&A);printf("\nB链表为:");print(&B);linklist C = Union(&A, &B);printf("\n合并后的链表为:");print(&C);return 0;
}

测试结果如下

 

这篇关于严蔚敏数据结构p17(2.19)——p18(2.24) (c语言代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/452861

相关文章

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

Spring定时任务之fixedRateString的实现示例

《Spring定时任务之fixedRateString的实现示例》本文主要介绍了Spring定时任务之fixedRateString的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录从毫秒到 Duration:为何要改变?核心:Java.time.Duration.parse

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

Python实现自动化删除Word文档超链接的实用技巧

《Python实现自动化删除Word文档超链接的实用技巧》在日常工作中,我们经常需要处理各种Word文档,本文将深入探讨如何利用Python,特别是借助一个功能强大的库,高效移除Word文档中的超链接... 目录为什么需要移除Word文档超链接准备工作:环境搭建与库安装核心实现:使用python移除超链接的

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C#使用SendMessage实现进程间通信的示例代码

《C#使用SendMessage实现进程间通信的示例代码》在软件开发中,进程间通信(IPC)是关键技术之一,C#通过调用WindowsAPI的SendMessage函数实现这一功能,本文将通过实例介绍... 目录第一章:SendMessage的底层原理揭秘第二章:构建跨进程通信桥梁2.1 定义通信协议2.2