【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应

2023-12-04 06:52

本文主要是介绍【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运动物体的微多普勒效应为人体动作识别提供了可能,基于雷达的居家检测具有良好的隐私保护性,且不易受环境因素影响(如光照、温度等),近年来已受到国内外学者的广泛关注。由于雷达信号的非平稳特性,通过短时傅里叶变换或者小波变换等数字信号处理方法,揭示人体运动情况的多普勒与微多普勒特征已经能够很好地显示出来,这为基于雷达地人体摔倒检测提供了理论基础。

目录

1 多普勒效应

2 微多普勒效应

3 微多普勒信号分析


1 多普勒效应

        根据波动理论,当波源与观察者相互靠近或者相互远离时,观察者接收到的频率(以下简称接收频率)与波源频率不一致,这种现象叫做多普勒效应。根据波源与观察者的相对运动状态,多普勒效应可以分为以下两种情况:

(1)波源静止,观察者相对介质运动,接收频率与波源频率满足:

f_{r} = (v \pm v_0)/v \times f_{s}

其中 v 为波在介质中的传播速度,v0 为观察者的径向移动速度,若观察者靠近波源则取“+”号,反之取“-”号。

(2)观察者静止,波源相对介质运动,接收频率与波源频率满足:

f_{r} = v / (v \mp v_{s}) \times f_{s}

其中 vs 为波源的径向移动速度,若波源向观察者接近则取“-”号,反之取“+”号。

多普勒效应引起的接收频率和波源频率之差,定义为多普勒频移,即

\Delta f = f_{r} - f_{s}

多普勒频移可以通过对接收信号的频谱分析得到。

        应用多普勒效应的雷达称为多普勒雷达(Doppler Radar),在速度相同的情况下,信号频率 f_{t} 越高,多普勒效应越显著。

f_{d} \approx 2 v f_{t}/c

2 微多普勒效应

        在波源频率已知的情况下,运动物体速度的测量可以转换成多普勒频移的测量。或者说,多普勒效应可以用于测量运动物体的速度,例如行驶中的汽车。实际上,行驶中的汽车等物体在物理上被等效为一个刚体。

        然而在基于雷达的人体摔倒检测中,人体不能被视为一个刚体。这是因为人在摔倒或者做其他动作时, 除人体躯干运动之外,通常还伴随有手臂的摆动、头部的微小晃动等运动,这些运动也会在雷达时频谱图中引入多普勒频率。这种由非刚体自身结构的振动或转动而引起的多普勒效应,被称为微多普勒效应(Micro-Doppler Effect)。

If the object or any structural component of the object has an oscillatory motion in addition to the bulk motion of the object, the oscillation will induce additional frequency modulation on the returned signal and generates side bands about the Doppler shifted frequency of the transmitted signal due to the bulk motion. The additional Doppler modulation is called the micro-Doppler effect.

3 微多普勒信号分析

        人体雷达信号的多普勒特征与微多普勒特征,分别揭示了人体躯干的运动情况和除躯干外其他部位的运动情况。然而,微多普勒信号在分析过程中,也存在着一些挑战。

(1)强非平稳性,傅里叶频谱不能反映微多普勒效应的真实特征;

(2)多分量相互交叉,频带集中,难于分离;

(3)特征微弱,易被噪声淹没。

How to effectively decompose micro-Doppler signatures into mono-components that relate to the physical structural parts of a target and how to measure the embedded kinematic/structural information from mono-component signatures are still open issues.

        对于非平稳信号,可以采用时频变换和信号分解的分析方法。时频变换方法包括短时傅里叶变换(Short Time Fourier Transform, STFT)和连续小波变换(Continuous wavelet transform, CWT).

短时傅里叶变换

STFT_{x}(\tau , \omega) = \int^{\infty} _{-\infty} x(t) g(t-\tau) e^{-j\omega t} dt

连续小波变换

CWT_{x} (a, b; \psi) = 1/\sqrt{a} \int ^{\infty} _{-\infty} x(t) \psi((t-b)/a) dt

        通过短时傅里叶变换或者小波变换等数字信号处理方法,揭示人体运动情况的多普勒特征和微多普勒特征已经能够很好地显示出来,这为基于雷达的人体摔倒检测提供了理论基础。

这篇关于【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452548

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security